Đề thi thử THPT Quốc gia lần 1 môn Toán học 12 - Năm học 2020-2021 (Có lời giải)
Bạn đang xem 20 trang mẫu của tài liệu "Đề thi thử THPT Quốc gia lần 1 môn Toán học 12 - Năm học 2020-2021 (Có lời giải)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_thu_thpt_quoc_gia_lan_1_mon_toan_hoc_12_nam_hoc_2020.doc
Nội dung text: Đề thi thử THPT Quốc gia lần 1 môn Toán học 12 - Năm học 2020-2021 (Có lời giải)
- TRƯỜNG ĐH KHTN ĐỀ THI THỬ THPTQG LẦN 1 TRƯỜNG THPT CHUYÊN NĂM HỌC 2020 – 2021 KHTN MÔN: TOÁN Thời gian làm bài: 90 phút; không kể thời gian phát đề x y 1 z 1 Câu 1 (TH): Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d : và 1 2 1 2 x 1 y 2 z 3 d : . Khoảng cách giữa hai đường thẳng này bằng: 2 1 2 2 17 17 16 A. B. C. D. 16 16 4 17 Câu 2 (TH): Diện tích hình phẳng giới hạn bởi đường thẳng y x 3 và parabol y 2x2 x 1 bằng: 13 13 9 A. 9B. C. D. 6 3 2 Câu 3 (TH): Phương trình z4 16 có bao nhiêu nghiệm phức? A. 0 B. 4 C. 2 D. 1 Câu 4 (VD): Cho hàm số y x3 mx2 m2 x 8. Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành? A. 3 B. 5 C. 4 D. 6 mx 4 Câu 5 (TH): Có bao nhiêu giá trị nguyên của m để hàm số y nghịch biến trên khoảng 1;1 ? x m A. 4 B. 2 C. 5 D. 0 1 Câu 6 (NB): Hàm số y x 1 3 có tập xác định là: A. 1; B. 1; C. ; D. ;1 1; x y 1 z 1 Câu 7 (TH): Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng : và mặt 2 2 1 phẳng Q : x y 2z 0. Viết phương trình mặt phẳng P đi qua điểm A 0; 1;2 , song song với đường thẳng và vuông góc với mặt phẳng Q . A. x y 1 0 B. 5x 3y 3 0 C. x y 1 0 D. 5x 3y 2 0 Câu 8 (TH): Tập nghiệm của bất phương trình log 1 x log 1 2x 1 là: 2 2 1 1 1 1 A. ;1 B. ;1 C. ;1 D. ;1 2 4 4 2 Câu 9 (VD): Tìm tất cả các giá trị thực của m để phương trình x4 2x2 3 2m 1 có đúng 6 nghiệm thực phân biệt. Tải trọn bộ 50-100 Đề File Word Giải Chi Tiết Vui Lòng Liên Hệ : Zalo : O937-351-107
- 3 5 A. 1 m B. 4 m 5 C. 3 m 4 D. 2 m 2 2 2 2 Câu 10 (TH): Số nghiệm thực của phương trình log4 x log2 x 2 là: A. 0 B. 2 C. 4 D. 1 Câu 11 (TH): Có bao nhiêu giá trị nguyên của m để đồ thị hàm số y x3 12x 1 m cắt trục hoành tại 3 điểm phân biệt? A. 3 B. 33 C. 32 D. 31 Câu 12 (VD): Cho a,b là các số thực dương thỏa mãn log a 3 b 3. Tính log b 3 a . ab ab 1 1 A. B. C. 3 D. 3 3 3 16 Câu 13 (TH): Giá trị nhỏ nhất của hàm số y x2 trên 0; bằng: x A. 6 B. 4 C. 24 D. 12 Câu 14 (VD): Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a 2. Cạnh bên SA vuông góc với đáy. Góc giữa SC và mặt phẳng đáy bằng 450. Gọi E là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng DE và SC. 2a 19 a 10 a 10 2a 19 A. B. C. D. 19 19 5 5 Câu 15 (TH): Có bao nhiêu giá trị nguyên dương của m không vượt quá 2021 để phương trình 4x 1 m.2x 2 1 0 có nghiệm? A. 2019 B. 2018 C. 2021 D. 2017 2 x3 1 Câu 16 (TH): Biết rằng dx a bln 3 c ln 2 với a,b,c là các số hữu tỉ. Tính 2a 3b 4c. 2 1 x x A. 5 B. 19 C. 5 D. 19 Câu 17 (TH): Biết rằng log2 3 a,log2 5 b. Tính log45 4 theo a,b. 2a b 2b a 2 A. B. C. D. 2ab 2 2 2a b Câu 18 (TH): Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5. A. 38 B. 48 C. 44 D. 24 Câu 19 (NB): Trong không gian với hệ tọa độ Oxyz, cho điểm A 1;3; 2 và mặt phẳng P : 2x y 2z 3 0. Khoảng cách từ điểm A đến mặt phẳng P bằng: 2 A. B. 2 C. 3 D. 1 3 Trang 2
- Câu 20 (TH): Một lớp học có 30 học sinh nam và 10 học sinh nữ. Giáo viên chủ nhiệm cần chọn một ban cán sự lớp gồm 3 học sinh. Tính xác suất để ban cán sự lớp có cả nam và nữ. 435 135 285 5750 A. B. C. D. 988 988 494 9880 Câu 21 (TH): Tính nguyên hàm tan2 2xdx. 1 1 A. tan 2x x C B. tan 2x x C C. tan 2x x C D. tan 2x x C 2 2 4 x 3 x Câu 22 (TH): Số nghiệm nguyên thuộc đoạn 99;100 của bất phương trình sin cos là: 5 10 A. 5 B. 101 C. 100 D. 4 x 1 y 2 z Câu 23 (TH): Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : và mặt 1 2 2 phẳng P :2x y 2z 3 0. Gọi α là góc giữa đường thẳng Δ và mặt phẳng (P). Khẳng định nào sau đây là đúng? 4 4 4 4 A. cos B. sin C. cos D. sin 9 9 9 9 Câu 24 (TH): Cho cấp số cộng un thỏa mãn u1 u2020 2, u1001 u1221 1. Tính u1 u2 u2021. 2021 A. B. 2021 C. 2020 D. 1010 2 x 1 y 2 z 3 Câu 25 (TH): Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : và điểm 2 2 1 A 1;2;0 . Khoảng cách từ điểm A đến đường thẳng Δ bằng: 17 17 2 17 2 17 A. B. C. D. 9 3 9 3 8 Câu 26 (VD): Có bao nhiêu giá trị nguyên dương của m để hàm số y x3 2ln x mx đồng biến trên 3 0;1 ? A. 5 B. 10 C. 6 D. vô số x 1 y 1 z Câu 27 (TH): Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : và hai mặt 1 1 2 phẳng P :x 2y 3z 0, Q :x 2y 3z 4 0. Viết phương trình mặt cầu có tâm thuộc đường thẳng và tiếp xúc với cả hai mặt phẳng P và Q . 2 2 1 2 2 1 A. x2 y 2 z 2 B. x2 y 2 z 2 7 7 Trang 3
- 2 2 2 2 2 2 C. x2 y 2 z 2 D. x2 y 2 z 2 7 7 Câu 28 (TH): Tìm nguyên hàm 2x 1 ln xdx . x2 x2 A. x x2 ln x x C B. x x2 ln x x C 2 2 x2 x2 C. x x2 ln x x C D. x x2 ln x x C 2 2 1 ab Câu 29 (VDC): Cho a,b là các số thực dương thỏa mãn 2a b 2ab 3 . Giá trị nhỏ nhất của biểu a b thức a2 b2 là: 2 5 1 A. 3 5 B. 5 1 C. D. 2 2 Câu 30 (VD): Cho hàm số y mx3 mx2 m 1 x 1. Tìm tất cả các giá trị của m để hàm số nghịch biến trên R? 3 3 3 A. m 0 B. m 0 C. m 0 D. m 4 4 4 Câu 31 (VD): Có bao nhiêu giá trị nguyên dương của m để hàm số y x2 8ln 2x mx đồng biến trên 0; ? A. 6 B. 7 C. 5 D. 8 Câu 32 (TH): Cho số phức z thỏa mãn 3z i z 8 0. Tổng phần thực và phần ảo của z bằng: A. 1 B. 2 C. 1 D. 2 Câu 33 (VDC): Trong không gian với hệ tọa độ Oxyz, cho các điểm A 1;0;2 , B 1;1;3 , C 3;2;0 và mặt phẳng P :x 2y 2z 1 0 . Biết rằng điểm M a;b;c thuộc mặt phẳng (P) sao cho biểu thức MA2 2MB2 MC 2 đạt giá trị nhỏ nhất. Khi đó a b c bằng: A. 1 B. 1 C. 3 D. 5 Câu 34 (TH): Tính đạo hàm của hàm số y ln x 1 . x 1 1 1 A. B. C. D. x 1 x 1 x x 2x 2 x 2 Câu 35 (TH): Tính nguyên hàm x2 2x3 1 dx . 3 3 3 3 2x3 1 2x3 1 2x3 1 2x3 1 A. C B. C C. C D. C 18 3 6 9 2 Câu 36 (TH): Phương trình 2x 3x có bao nhiêu nghiệm thực? A. 2 B. 1 C. 0 D. 3 Trang 4
- Câu 37 (VD): Cho hàm số y x3 3x2 2. Có bao nhiêu tiếp tuyến với đồ thị hàm số đi qua điểm A 1;0 ? A. 2 B. 0 C. 1 D. 3 Câu 38 (TH): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a 3 , SA ABCD và SA a 2 . Tính góc giữa SC và ABCD . A. 900 B. 450 C. 300 D. 600 Câu 39 (TH): Tọa độ tâm đối xứng của đồ thị hàm số y x3 3x 2 là: A. 0;0 B. 0;2 C. 1;0 D. 1;4 Câu 40 (VD): Cho hàm số f x liên tục trên ¡ và thỏa mãn xf x x 1 f x e x với mọi x . Tính f 0 . 1 A. 1B. 1 C. D. e e Câu 41 (TH): Trong không gian với hệ tọa độ Oxyz , cho điểm A 1; 1; 2 và mặt phẳng P :x 2y 3z 4 0 . Viết phương trình đường thẳng đi qua A và vuông góc với (P). x 1 y 1 z 2 x 1 y 1 z 2 A. B. 1 2 3 1 2 3 x 1 y 1 z 2 x 1 y 1 z 2 C. D. 1 2 3 1 2 3 Câu 42 (VDC): Có bao nhiêu giá trị thực của m để hàm số y mx9 m2 3m 2 x6 2m3 m2 m x4 m đồng biến trên ¡ . A. Vô số B. 1 C. 3 D. 2 1 Câu 43 (VD): Cho hàm số f x liên tục trên 0; và thỏa mãn 2 f x xf x với mọi x 0 . x 2 Tính f x dx . 1 2 7 7 9 3 A. B. C. D. 12 4 4 4 x 2 Câu 44 (TH): Biết rằng đường thẳng y 1 2x cắt đồ thị hàm số y tại hai điểm phân biệt A và x 1 B. Độ dài đoạn thẳng AB bằng: A. 20B. 20 C. 15D. 15 Trang 5
- Câu 45 (VD): Cho hình chóp S.ABC có AB 3a, BC 4a,CA 5a , các mặt bên tạo với đáy góc 600 , hình chiếu vuông góc của S lên mặt phẳng ABC thuộc miền trong tam giác ABC. Tính thể tích hình chóp S.ABC . A. 2a3 3 B. 6a3 3 C. 12a3 3 D. 2a3 2 Câu 46 (VD): Cho khối lăng trụ tam giác đều ABC.A B C có cạnh đáy là 2a và khoảng cách từ điểm A đến mặt phẳng A BC bằng a. Tính thể tích của khối lăng trụ ABC.A B C . 2a3 a3 2 3a3 2 A. B. C. 2 2a3 D. 3 2 2 Câu 47 (TH): Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng 3x 2 và đồ thị hàm số y x2 quanh quanh trục Ox . 1 4 A. B. C. D. 6 6 5 u8 u9 u10 Câu 48 (TH): Cho cấp số nhân un thỏa mãn 2 u3 u4 u5 u6 u7 u8 . Tính . u2 u3 u4 A. 4 B. 1 C. 8 D. 2 Câu 49 (VD): Tìm tập hợp các điểm biểu diễn số phức z thỏa mãn z 1 3i z 1 i . A. x 2y 2 0 B. x y 2 0 C. x y 2 0 D. x y 2 0 Câu 50 (VDC): Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB BC 3a , góc SAB SCB 900 và khoảng cách từ A đến mặt phẳng SBC bằng a 6 . Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC . A. 36 a2 B. 6 a2 C. 18 a2 D. 48 a2 Đáp án 1-C 2-A 3-B 4-C 5-B 6-B 7-C 8-A 9-D 10-B 11-D 12-B 13-D 14-A 15-B 16-D 17-C 18-A 19-B 20-C 21-A 22-C 23-B 24-A 25-D 26-C 27-B 28-A 29-C 30-D 31-D 32-D 33-C 34-D 35-A 36-A 37-C 38-C 39-B 40-B 41-A 42-B 43-D 44-D 45-A 46-D 47-D 48-A 49-D 50-A LỜI GIẢI CHI TIẾT Câu 1: Đáp án C Phương pháp giải: Trang 6
- Cho đường thẳng d1 đi qua điểm M1 và có VTCP u1; đường thẳng d2 đi qua điểm M 2 và có VTCP u2. u ,u .M M 1 2 1 2 Khi đó ta có khoảng cách giữa d1,d2 được tính bởi công thức: d d1;d2 . u ,u 1 2 Giải chi tiết: Ta có: x y 1 z 1 d : d đi qua M 0;1; 1 và có 1 VTCP là: u 2;1; 2 . 1 2 1 2 1 1 1 x 1 y 2 z 3 d : d đi qua M 1;2;3 và có 1 VTCP là: u 1;2; 2 . 2 1 2 2 2 2 2 M1M 2 1;1;4 u ,u 2;2;3 1 2 u ,u .M M 1 2 1 2 2 2 12 16 d d1;d2 . u ,u 22 22 32 17 1 2 Câu 2: Đáp án A Phương pháp giải: - Xét phương trình hoành độ tìm 2 đường giới hạn x a, x b . - Diện tích hình phẳng giới hạn bởi đồ thị hàm số y f x , y g x , đường thẳng x a,x b là b S f x g x dx . a Giải chi tiết: 2 x 2 Xét phương trình hoành độ giao điểm: x 3 2x x 1 . x 1 2 Vậy diện tích hình phẳng cần tính là S x 3 2x2 x 1 dx 9 . 1 Câu 3: Đáp án B Phương pháp giải: Sử dụng hằng đẳng thức a2 b2 a b a b . Giải chi tiết: Ta có z4 16 z4 16 0 z2 4 z2 4 0 z2 4 z 2 2 z 4 z 2i Trang 7
- Vậy phương trình đã cho có 4 nghiệm phức. Câu 4: Đáp án C Phương pháp giải: - Giải phương trình y 0 xác định các giá trị cực trị theo m. - Chia các TH, tìm các giá trị cực tiểu tương ứng và giải bất phương trình yCT 0. Giải chi tiết: Ta có y 3x2 2mx m2 ; y 0 có m2 3m2 4m2 0m . Để hàm số có cực tiểu, tức là có 2 điểm cực trị thì phương trình y 0 phải có 2 nghiệm phân biệt m 0 m 2m x m y m3 8 3 Khi đó ta có y 0 m 2m m 5m3 x y 8 3 3 27 m 0 3 y m 8 0 m 2 CT 0 m 2 Khi đó yêu cầu bài toán m 0 6 m 0 5m3 6 3 5 yCT 8 0 m 27 3 5 Lại có m ¢ m 3; 2; 1;1 . Vậy có 4 giá trị của m thỏa mãn yêu cầu bài toán. Câu 5: Đáp án B Phương pháp giải: y 0 ax b Hàm số y nghịch biến trên ; khi và chỉ khi d cx d ; c Giải chi tiết: TXĐ: D ¡ \ m . mx 4 m2 4 Ta có y y . x m x m 2 Để hàm số nghịch biến trên khoảng 1;1 thì m2 4 0 2 m 2 y 0 1 m 2 m 1 m 1 . m 1;1 2 m 1 m 1 m 1 Lại có m ¢ m 1. Vậy có 2 giá trị của m thỏa mãn yêu cầu bài toán. Câu 6: Đáp án B Trang 8
- Phương pháp giải: Hàm số y xn với n ¢ xác định khi và chỉ khi x 0 . Giải chi tiết: 1 Hàm số y x 1 3 xác định khi và chỉ khi x 1 0 x 1. Vậy TXĐ của hàm số là 1; . Câu 7: Đáp án C Phương pháp giải: - Xác định u là 1 VTCP của và nQ là 1 VTPT của Q . P / / n u P - Vì nP nQ ;u . P Q nP nQ - Phương trình mặt phẳng đi qua M x0 ; y0 ; z0 và có 1 VTPT → n A; B;C là A x x0 B y y0 C z z0 0 . Giải chi tiết: Đường thẳng có 1 VTCP là u 2; 2;1 . Mặt phẳng Q có 1 VTPT là nQ 1; 1;2 . P / / nP u Gọi nP là 1 VTPT của mặt phẳng P . Vì . P Q nP nQ n n ;u 3;3;0 n 1;1;0 cũng là 1 VTPT của P . P Q Vậy phương trình mặt phẳng P là 1. x 0 1. y 1 0. z 2 0 x y 1 0 . Câu 8: Đáp án A Phương pháp giải: - Tìm ĐKXĐ của bất phương trình. - Giải bất phương trình logarit: loga f x loga g x f x g x khi 0 a 1. Giải chi tiết: x 0 1 ĐKXĐ: x . 2x 1 0 2 Ta có: log 1 x log 1 2x 1 2 2 2 2 log 1 x log 1 2x 1 x 2x 1 2 2 Trang 9
- 1 x2 4x2 4x 1 3x2 4x 1 0 x 1 3 1 Kết hợp điều kiện ta có tập nghiệm của phương trình là S ;1 . 2 Câu 9: Đáp án D Phương pháp giải: - Xét phương trình hoành độ giao điểm, cô lập m, đưa phương trình về dạng m f x . - Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng y 2m 1 phải cắt đồ thị hàm số y x4 2x2 3 tại 3 điểm phân biệt. - Lập BBT hàm số y x4 2x2 3 , từ đó lập BBT hàm số y x4 2x2 3 , y x4 2x2 3 và tìm m thỏa mãn. Giải chi tiết: Số nghiệm của phương trình x4 2x2 3 2m 1 là số giao điểm của đồ thị hàm số y x4 2x2 3 và đường thẳng y 2m 1. 4 2 3 x 0 Xét hàm số y x 2x 3 ta có y 4x 4x 0 x 1 BBT: Từ đó ta suy ra BBT của đồ thị hàm số y x4 2x2 3 . - Từ đồ thị y x4 2x2 3 lấy đối xứng phần đồ thị bên dưới trục Ox qua trục Ox . - Xóa đi phần đồ thị bên dưới trục Ox . Ta có BBT của đồ thị hàm số y x4 2x2 3 như sau: Trang 10
- Dựa vào BBT ta thấy đường thẳng y 2m 1 cắt đồ thị hàm số y x4 2x2 3 tại 6 điểm phân biệt khi 5 và chỉ khi 3 2m 1 4 4 2m 5 2 m . 2 5 Vậy 2 m . 2 Câu 10: Đáp án B Phương pháp giải: - Xét phương trình hoành độ giao điểm, cô lập m, đưa phương trình về dạng m f x . - Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng y m phải cắt đồ thị hàm số y f x tại 3 điểm phân biệt. - Lập BBT hàm số y f x và tìm m thỏa mãn. Giải chi tiết: x 0 x2 0 x 2 ĐKXĐ: 2 x 2 x 2 0 x 2 x 2 Ta có: 2 2 log4 x log2 x 2 1 2 .2.log2 x log2 x 2 2 2 2 log2 x log2 x 2 x 2 x x 2 x 2 0 x 2 x 2 tm Vậy phương trình đã cho có 2 nghiệm phân biệt. Câu 11: Đáp án D Phương pháp giải: - Xét phương trình hoành độ giao điểm, cô lập m, đưa phương trình về dạng m f x . - Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng y m phải cắt đồ thị hàm số y f x tại 3 điểm phân biệt. - Lập BBT hàm số y f x và tìm m thỏa mãn. Giải chi tiết: Xét phương trình hoành độ giao điểm x3 12x 1 m 0 m x3 12x 1 f x . Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng y m phải cắt đồ thị hàm số y f x tại 3 điểm phân biệt. Trang 11
- Ta có f x 3x2 12 0 x 2 . BBT: Dựa vào BBT ta thấy để đường thẳng y m phải cắt đồ thị hàm số y f x tại 3 điểm phân biệt thì 15 m 17 . Mà m ¢ m 14; 13; 12; ;15;16. Vậy có 31 giá trị của m thỏa mãn yêu cầu bài toán. Câu 12: Đáp án B Phương pháp giải: - Sử dụng các công thức: loga xy loga x loga y 0 a 1, x, y 0 m m log n b log b 0 a 1,b 0 a n a Từ giả thiết tính loga b . - Biến đổi biểu thức cần tính bằng cách sử dụng các công thức trên, thay loga b vừa tính được để tính giá trị biểu thức. Giải chi tiết: Theo bài ra ta có: log√ab(a3√b)=log√ab(3√ab.3√a2)=log√ab3√ab+log√ab3√a2=log(ab)12(ab)13+1loga23(ab)12=132.logab (ab)+112.32loga(ab)=23+134(1+logab)⇒23+134(1+logab)=3⇒logab=−37logab(ab3)=logab(ab3.a23)=lo gabab3+logaba23=log(ab)12(ab)13+1loga23(ab)12=132.logab(ab)+112.32loga(ab)=23+134(1+logab)⇒2 3+134(1+logab)=3⇒logab=−37 log a 3 b log 3 ab.3 a2 ab ab log 3 ab log 3 a2 ab ab 1 1 3 log 1 ab 1 ab 2 2 log 2 ab a 3 1 1 2.log ab ab 1 3 3 . log ab 2 2 a 2 1 3 3 1 log b 4 a Trang 12
- 2 1 3 3 3 1 log b 4 a 3 log b a 7 Khi đó ta có: log b 3 a log 3 ab 3 b2 ab ab log 3 ab log 3 b2 ab ab 1 1 3 log 1 ab 1 ab 2 2 log 2 ab b3 1 1 .2.log ab ab 1 3 3 . log ab 2 2 b 2 1 3 3 log a 1 4 b 2 4 1 1 . 7 3 3 1 3 3 Câu 13: Đáp án D Phương pháp giải: Lập BBT của hàm số trên 0; và tìm GTNN của hàm số. Giải chi tiết: Hàm số đã cho xác định trên 0; . 16 2x3 16 Ta có y 2x ; y 0 x 2. x2 x2 BBT: Dựa vào BBT ta thấy min y 12 . 0; Câu 14: Đáp án A Trang 13
- Phương pháp giải: - Xác định mặt phẳng P chứa DE và song song với SC , khi đó d DE;SC d SC; P . - Đổi sang d A; P . Dựng khoảng cách. - Xác định góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó. - Sử dụng hệ thức lượng trong tam giác vuông, định lí Pytago, diện tích để tính khoảng cách. Giải chi tiết: Trong ABCD gọi I AC DE , trong SAC kẻ IG / /SC G SA , khi đó ta có DE GDE / /SC . d SC; DE d SC; GDE d C; GDE . IC EC 1 d C; GDE IC 1 Áp dụng định lí Ta-lét ta có: , do AC GDE I nên IA AD 2 d A; GDE IA 2 1 d C; GDE d A; GDE . 2 Trong ABCD kẻ AH DE H DE , trong GAH kẻ AK GH K GH ta có: DE AH DE AGH DE AK DE AG AK GH AK GDE d A; GDE AK AK DE Vì SA ABCD nên AC là hình chiếu vuông góc của SC lên ABCD SC; ABCD SC; AC SCA 450 . SAC vuông cân tại A. Vì ABCD là hình vuông cạnh a 2 nên AC a 2. 2 2a SA. AG AI 2 4a Áp dụng định lí Ta-lét ta có AG . AS AC 3 3 1 1 1 Ta có: S d E; AD .AD AB.AD a 2.a 2 a2 . AED 2 2 2 Trang 14
- a2 a 10 Áp dụng định lí Pytago trong tam giác vuông CDE ta có DE CD2 CE 2 2a2 . 2 2 2S 2a2 2a 10 AH AED . ED a 10 5 2 Áp dụng hệ thức lượng trong tam giác vuông GAH ta có AK=AG.AH√AG2+AH2=4a3.2a√105 4a 2a 10 . AG.AH 4a 19 AK 3 5 . 2 2 2 2 19 AG AH 4a 2a 10 3 5 1 2a 19 Vậy d DE;SC . 2 19 Câu 15: Đáp án B Phương pháp giải: - Đặt ẩn phụ t 2x 2 0. - Cô lập m, đưa phương trình về dạng m g t t 0 . - Lập BBT của hàm số g t khi t 0 . - Dựa vào BBT tìm giá trị của m để phương trình có nghiệm. Giải chi tiết: 2 Ta có 4x 1 m.2x 2 1 0 4. 2x 2 m.2x 2 1 0. 4t 2 1 Đặt t 2x 2 0, phương trình đã cho trở thành 4t 2 mt 1 0 m g t t 0 . t 4t 2 1 1 1 1 Xét hàm số g t 4t có g t 4 0 t . t t t 2 2 BBT: Dựa vào BBT ta thấy phương trình có nghiệm t 0 m 4 . Trang 15
- m ¢ Kết hợp điều kiện m 4;5;6; ;2020;2021 . m 2021 Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán. Câu 16: Đáp án D Phương pháp giải: - Chia tử cho mẫu để đưa biểu thức dưới dấu tích phân về dạng đa thức + phân thức hữu tỉ có bậc tử nhỏ hơn bậc mẫu. 2 k - Phân tích mẫu thành nhân tử, biến đổi để xuất hiện các tích phân dạng dx . 1 ax b - Tính tích phân và tìm a,b,c Giải chi tiết: 2 x3 1 2 x 1 Ta có: dx x 1 dx 2 2 1 x x 1 x x 2 2 x 1 1 x 1 dx dx I 1 1 x x 1 2 x 1 B C x 1 B x 1 Cx Giả sử x x 1 x x 1 x x 1 x x 1 x 1 B C x B B C 1 B 1 x x 1 x x 1 B 1 C 2 Khi đó ta có 2 x 1 2 1 2 2 I dx dx dx 1 x x 1 1 x 1 x 1 2 2 ln x 2ln x 1 ln 2 2ln 3 2ln 2 2ln 3 3ln 2 1 1 1 a 2 2 x3 1 1 dx 2ln 3 3ln 2 b 2 x2 x 2 1 c 3 1 Vậy 2a 3b 4c 2. 3.2 4. 3 19 . 2 Câu 17: Đáp án C Phương pháp giải: m Sử dụng các công thức: loga b mloga b 0 a 1,b 0 1 loga b 0 a,b 1 logb a Trang 16
- Giải chi tiết: Ta có: 2 log 4 2log 2 45 32.5 2 log2 3 log2 5 2 2 2log2 3 log2 5 2a b Câu 18: Đáp án A Phương pháp giải: - Gọi số tự nhiên có 4 chữ số khác nhau là abcd a;b;c;d 0;1;2;3;4;5,a b c d . abcd5 d 0;5 - Vì abcd15 nên . abcd3 - Ứng với mõi trường hợp của d, tìm các cặp số a,b,c tương ứng. Giải chi tiết: Gọi số tự nhiên có 4 chữ số khác nhau là abcd a;b;c;d 0;1;2;3;4;5,a b c d . abcd5 d 0;5 Vì abcd15 nên . abcd3 + TH1: d 0 , số cần tìm có dạng abc0 a b c3. Các bộ ba chữ số chia hết cho 3 là 1;2;3; 1;3;5; 2;3;4; 3;4;5 . ⇒ có 4.3! 24 cách chọn a,b,c . ⇒ Có 24 số thỏa mãn. TH2: d 5, số cần tìm có dạng abc5 a b c 53 a b c chia 3 dư 1. Các bộ ba chữ số chia 3 dư 1 là 0;1;3; 1;2;4; 0;3;4 . ⇒ có 2.2.2! 3! 14 cách chọn a,b,c . ⇒ Có 14 số thỏa mãn. Vậy có tất cả 14 14 38 số thỏa mãn. Câu 19: Đáp án B Phương pháp giải: - Khoảng cách từ điểm M x0 ; y0 ; z0 đến mặt phẳng P : Ax By Cz D 0 là Ax By Cz D d M ; P 0 0 0 . A2 B2 C 2 Giải chi tiết: Trang 17
- 2.1 3 2. 2 3 d A; P 2 . 22 12 2 2 Câu 20: Đáp án C Phương pháp giải: - Tính số phần tử của không gian mẫu là n là số cách chọn 3 học sinh bất kì. - Gọi A là biến cố: “Ban sự lớp gồm 3 bạn có cả nam và nữ”. Xét 2 TH để tính số phần tử của biến cố A là n A . + TH1: Chọn 1 nam và 2 nữ + TH2: Chọn 2 nam và 1 nữ n A - Tính xác suất của biến cố A: P A . n Giải chi tiết: 3 3 Số cách chọn 3 bạn bất kì là C40 nên số phần tử của không gian mẫu là n C40 . Gọi A là biến cố: “Ban sự lớp gồm 3 bạn có cả nam và nữ”. 1 2 TH1: Chọn 1 nam và 2 nữ có C30.C10 cách. 2 1 TH2: Chọn 2 nam và 1 nữ có C30.C10 cách. 1 2 2 1 n A C40.C10 C40.C10 . 1 2 2 1 n A C30.C10 C30.C10 15 285 Vậy xác suất của biến cố A là P A 3 . n C40 26 494 Câu 21: Đáp án A Phương pháp giải: 1 - Sử dụng công thức tan2 1. cos2 1 1 - Sử dụng công thức tính nguyên hàm mở rộng: dx tan2 ax b . cos2 ax b a Giải chi tiết: Ta có: 2 1 1 1 tan 2xdx 2 1 dx 2 dx dx tan 2x x C cos 2x cos 2x 2 Câu 22: Đáp án C Phương pháp giải: - Sử dụng tính chất sin cos . 2 Trang 18
- - Giải bất phương trình mũ: a f x a g x f x g x khi 0 a 1. - Giải bất phương trình đại số tìm x, sau đó kết hợp điều kiện đề bài. Giải chi tiết: 3 5 3 Vì nên sin cos . 5 10 10 2 5 10 Khi đó ta có 4 4 x x 3 x x 4 sin cos sin sin x do0 sin 1 5 10 5 5 x 5 x2 4 x 2 0 x 0 x 2 Kết hợp điều kiện x 99;100 ta có x 99; 2 0;2 . Vậy phương trình đã cho có 100 nghiệm nguyên thỏa mãn. Câu 23: Đáp án B Phương pháp giải: nP .ud Gọi là góc giữa P và , khi đó ta có sin , với np và ud lần lượt là 1 vtpt của P và nP . ud vtcp của Δ. Giải chi tiết: x 1 y 2 z Mặt phẳng P :2x y 2z 3 0 có 1 vtpt là n 2; 1;2 , đường thẳng : có 1 P 1 2 2 vtcp là ud 1;2; 2 . nP .ud 2.1 1.2 2. 2 4 Ta có: sin . 2 2 2 2 2 2 9 nP . ud 2 1 2 . 1 2 2 65 cos 1 sin2 . 9 Câu 24: Đáp án A Phương pháp giải: - Gọi d là công sai của CSC trên. Sử dụng công thức SHTQ của CSC: un u1 n 1 d , giải hệ phương trình tìm u1,d . 2u n 1 d n - Sử dụng công thức tính tổng n số hạng đầu tiên của CSC: u u u u 1 1 2 3 n 2 Giải chi tiết: Gọi d là công sai của CSC trên. Theo bài ra ta có: Trang 19
- 2021 u1 u2020 2 2u1 2019d 2 u 1 2 . u1001 u1021 1 2u1 2020d 1 d 1 2u 2020d .2021 2021 Vậy u u u 1 . 1 2 2021 2 2 Câu 25: Đáp án D Phương pháp giải: AM ;u d Sử dụng công thức tính khoảng cách từ A đến đường thẳng d là d A;d , trong đó M là ud điểm bất kì thuộc d và ud là 1 vtcp của đường thẳng d. Giải chi tiết: Lấy M 1;2;3 d . Đường thẳng d có 1 VTCP là ud 2; 2;1 . Ta có: AM 2;0;3 AM ;u 6;4; 4 . d AM ;u 2 2 2 d 6 4 4 2 17 Vậy d A;d . 2 2 2 3 ud 2 2 1 Câu 26: Đáp án C Phương pháp giải: - Để hàm số đồng biến trên 0;1 thì y 0x 0;1 . - Cô lập m , đưa bất phương trình về dạng m g x x 0;1 m min g x . 0;1 - Lập BBT hàm số g x trên 0;1 và kết luận. Giải chi tiết: TXĐ: D 0; nên hàm số xác định trên 0;1 . 2 Ta có y 8x2 m . x 2 Để hàm số đồng biến trên 0;1 thì y 0x 0;1 m 8x2 x 0;1 . x 2 Đặt g x 8x2 , x 0;1 , khi đó ta có m g x x 0;1 m min g x . x 0;1 2 16x3 2 1 Ta có g x 16x ; g x 0 x tm . x2 x2 2 BBT: Trang 20
- Dựa vào BBT m 6. Kết hợp điều kiện m ¢ m 1;2;3;4;5;6 . Vậy có 6 giá trị của m thỏa mãn yêu cầu bài toán. Câu 27: Đáp án B Phương pháp giải: - Gọi tâm mặt cầu là I, tham số hóa tọa độ điểm I theo biến t. - Vì mặt cầu có tiếp xúc với cả hai mặt phẳng P và Q nên R d I; P d I; Q . Giải phương trình tìm t và suy ra tâm, bán kính mặt cầu. 2 2 2 2 - Mặt cầu tâm I x0 ; y0 ; z0 , bán kính R có phương trình là x x0 y y0 z z0 R . Giải chi tiết: Gọi tâm mặt cầu là I 1 t; 1 t;2t . Vì mặt cầu có tiếp xúc với cả hai mặt phẳng P và Q nên R d I; P d I; Q . 1 t 2 1 t 3.2t 1 t 2 1 t 3.2t 4 12 22 32 12 22 32 5t 3 5t 7 5t 3 5t 7 t 1 5 3 2 Khi đó mặt cầu có tâm I 0; 2; 2 , bán kính R . 14 14 2 2 2 Vậy bán kính mặt cầu cần tìm là x2 y 2 z 2 7 Câu 28: Đáp án A Phương pháp giải: Tính nguyên hàm bằng phương pháp từng phần: udv uv vdu . Giải chi tiết: dx u ln x du Đặt x dv 2x 1 dx 2 v x x x x 1 Khi đó ta có x2 2x 1 ln xdx x2 x ln x x 1 dx x2 x ln x x C 2 Trang 21
- Câu 29: Đáp án C Phương pháp giải: - Sử dụng phương pháp logarit cơ số 2 cả hai vế của phương trình, sau đó xét hàm đặc trưng. - Rút a theo b, từ điều kiện của a suy ra điều kiện chặt chẽ hơn của b. - Biến đổi P a2 b2 a b 2 2ab , đặt ẩn phụ t 2ab , lập BBT tìm miền giá trị của t. - Sử dụng phương pháp hàm số tìm GTNN của biểu thức P. Giải chi tiết: Theo bài ra ta có: 1 ab 2a b 2ab 3 a b a b 2ab 3 log2 1 ab log2 a b a b 2ab 2 log2 1 ab 1 log2 a b a b 2ab 2 log2 2 2ab log2 a b log2 a b a b log2 2 2ab 2 2ab * 1 Xét hàm số y log t t t 0 ta có y 1 0t 0 , do đó hàm số đồng biến trên 0; . 2 t ln 2 2 b Khi đó * a b 2 2ab a 1 2b 2 b a . 1 2b 2 b Vì a,b 0 0 2 b 0 b 2 . 1 2b Khi đó ta có P a2 b2 a b 2 2ab 2 2ab 2 2ab . 2 b 2b b2 Đặt t 2ab 2 .b 0 b 2 ta có t 2. 1 2b 1 2b 2 2b 1 2b 2b b2 .2 t 2. 1 2b 2 2 4b 2b 4b2 4b 2b2 4 4b 4b2 2. 1 2b 2 1 2b 2 1 5 t 0 b 2 BBT: Trang 22
- t 0;3 5 . 2 2 Khi đó ta có P 2 t t t 5t 4,t 0;3 5 . 5 Ta có P 2t 5 0 t ktm , do đó P P 3 5 3 5 . 2 min Câu 30: Đáp án D Phương pháp giải: - Để hàm số nghịch biến trên ¡ thì y 0x ¡ m 0 - Xét 2 TH: m 0 và . 0 Giải chi tiết: TXĐ: D ¡ . Ta có: y 3mx2 2mx m 1. Để hàm số nghịch biến trên ¡ thì y 0x ¡ . 3mx2 2mx m 1 0x ¡ m 0 m 0 m 0 1 0x ¡ luon dung m 0 m 0 m 0 3 4m2 3m 0 2 m 0 m 3m m 1 0 4 m 0 3 3 m 0 m 0 4 4 Câu 31: Đáp án D Phương pháp giải: - Để hàm số đồng biến trên 0; thì y 0x 0; . - Cô lập m, đưa bất phương trình về dạng m g x x 0; m min g x . 0; - Sử dụng BĐT Cô-si tìm min g x . 0; Giải chi tiết: Trang 23
- TXĐ: D 0; . 2 8 Ta có: y 2x 8. m 2x m 2x x Để hàm số đồng biến trên 0; thì y 0x 0; . 8 2x m 0x 0; x 8 m 2x x 0; * . x 8 Đặt g x 2x , khi đó * m min g x . x 0; 8 8 Áp dụng BĐT Cô-si ta có: 2x 2 2x. 2.4 8 min g x 8 , dấu “=” xảy ra x x 0; 8 2x x 2 . x Từ đó ta suy ra được m 8 , kết hợp điều kiện m ¢ m 1;2;3;4;5;6;7;8 . Vậy có 8 giá trị của m thỏa mãn yêu cầu bài toán. Câu 32: Đáp án D Phương pháp giải: - Đặt z a bi a;b ¡ z a bi . - Thay vào giả thiết 3z i z 8 0, đưa phương trình về dạng A Bi 0 A B 0 . Giải chi tiết: Đặt z a bi a;b ¡ z a bi . Theo bài ra ta có: 3z i z 8 0 3 a bi i a bi 8 0 3a 3bi ai b 8i 0 3a b 0 a 1 3a b a 3b 8 i 0 a 3b 8 0 b 3 Vậy tổng phần thực và phần ảo của z là a b 1 3 2 . Câu 33: Đáp án C Phương pháp giải: - Gọi I là điểm thỏa mãn IA 2IB IC 0. Phân tích MA2 2MB2 MC 2 theo MI. - Chứng minh đó MA2 2MB2 MC 2 đạt giá trị nhỏ nhất khi và chỉ khi MI đạt giá trị nhỏ nhất. - Với I cố định, tìm vị trí của M P để IM min . Trang 24
- - Tìm tọa độ điểm I, từ đó dựa vào mối quan hệ giữa IM và P để tìm tọa độ điểm M. Giải chi tiết: Gọi I là điểm thỏa mãn IA 2IB IC 0. Khi đó ta có: 2 2 2 MA2 2MB2 MC 2 MA 2MB MC 2 2 2 2 2 2 2 MI IA 2 MI IB MI IC 2MI 2MI IA 2IB IC IA 2IB IC 2MI 2 IA2 2IB2 IC 2 Vì I, A, B,C cố định nên IA2 2IB2 IC 2 không đổi, do đó MA2 2MB2 MC 2 đạt giá trị nhỏ nhất khi và chỉ khi MI đạt giá trị nhỏ nhất. Mà M P nên IM đạt giá trị nhỏ nhất khi và chỉ khi M là hình chiếu vuông góc của I lên P hay IM P IM và nP 1;2; 2 cùng phương, với nP là 1 vtpt của P . Tìm tọa độ điểm I ta gọi I x; y; z . Ta có: IA 2IB IC 0 x 1; y; z 2 2 x 1; y 1; z 3 x 3; y 2; z 0 x 1 2 x 1 x 3 0 2x 4 0 x 2 y 2 y 1 y 2 0 2y 0 y 0 I 2;0;4 z 2 2 z 3 z 0 2z 8 0 z 4 Khi đó ta có IM a 2;b;c 4 Vì IM và nP 1;2; 2 cùng phương, lại có M P nên ta có hệ phương trình: a 2 b c 4 2a b 4 0 a 1 1 2 2 b c 4 0 b 2 a 2b 2c 1 0 a 2b 2c 1 0 c 2 Vậy a b c 1 2 2 3 Câu 34: Đáp án D Phương pháp giải: u Sử dụng công thức tính đạo hàm ln u . u Giải chi tiết: x 1 1 1 y . x 1 2 x x 1 2x 2 x Câu 35: Đáp án A Phương pháp giải: Trang 25
- Tính nguyên hàm bằng phương pháp đổi biến, đặt t 2x3 1. Giải chi tiết: dt Đặt t 2x3 1 dt 6x2dx x2dx . 6 3 2 3 3 2 t dt 1 t 2x 1 Khi đó ta có x2 2x3 1 dx . C C . 6 6 3 18 Câu 36: Đáp án A Phương pháp giải: Sử dụng phương pháp logarit hai vế. Giải chi tiết: Lấy logarit cơ số 3 hai vế của phương trình ta có: x x2 x x2 2 2 3 log3 2 log3 3 x log3 2 x x x log3 2 0 x 0 x 0 x log3 2 0 x log3 2 Vậy phương trình đã cho có 2 nghiệm thực. Câu 37: Đáp án C Phương pháp giải: - Gọi M x0 ; y0 thuộc đồ thị hàm số. Viết phương trình tiếp tuyến của đồ thị hàm số tại M . - Phương trình tiếp tuyến d của đồ thị hàm số y f x tại M x0 ; y0 là y f x0 x x0 f x0 . - Cho A 1;0 d , giải phương trình tìm số nghiệm x0 . Số nghiệm x0 chính là số tiếp tuyến với đồ thị hàm số đi qua điểm A 1;0 cần tìm. Giải chi tiết: Ta có y 3x2 6x . Gọi M x0 ; y0 thuộc đồ thị hàm số. Phương trình tiếp tuyến của đồ thị hàm số tại điểm M x0 ; y0 là 2 3 2 y 3x0 6x0 x x0 x0 3x0 2 d . Cho A 1;0 d ta có: 2 3 2 0 3x0 6x0 1 x0 x0 3x0 2 2 3 2 3 2 3 0 3x0 6x0 3x0 6x0 x0 3x0 2 0 2x0 6x0 2 x0 0,32 Vậy có duy nhất 1 tiếp tuyến của đồ thị hàm số đã cho đi qua điểm A 1;0 . Câu 38: Đáp án C Phương pháp giải: Trang 26