Đề ôn thi môn Toán 12 - Chủ đề 1: Tọa độ trong không gian
Bạn đang xem tài liệu "Đề ôn thi môn Toán 12 - Chủ đề 1: Tọa độ trong không gian", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_on_thi_mon_toan_12_chu_de_1_toa_do_trong_khong_gian.docx
Nội dung text: Đề ôn thi môn Toán 12 - Chủ đề 1: Tọa độ trong không gian
- CHỦ ĐỀ 1: TỌA ĐỘ TRONG KHÔNG GIAN HÀM 1. Hệ trục tọa độ Oxyz: z • Trục hoành: Ox . Trục tung: Oy . Trục cao: Oz k • Các véctơ đơn vị: i 1;0;0 , j 0;1;0 , k 0;0;1 O y i j i 2 j 2 k 2 1 và i . j j.k k.i 0 x 2. Tọa độ điểm và tọa độ vectơ: Cho A xA; yA; zA , B xB ; yB ; zB , C xC ; yC ; zC : ① a a1;a2 ;a3 a a1.i a2 j a3.k ② M x; y; z OM x.i y. j z.k ③ AB xB xA; yB yA; zB zA ④ M là trung điểm của đoạn thẳng AB : x x y y z z x A B ; y A B ; z A B M 2 M 2 M 2 ⑤ G là trọng tâm của ABC : xA xB xC yA yB yC zA zB zC xG ; yG ; zG 3 3 3 ⑥ Điểm M chia đoạn AB theo tỉ số k(k 1) : MA kMB . Tọa độ M : x kx y ky z kz x A B ; y A B ; z A B M 1 k M 1 k M 1 k 3. Vectơ bằng nhau. Tọa độ của vectơ tổng, vectơ hiệu: Cho a a1;a2 ;a3 và b b1;b2 ;b3 a1 b1 ① a b a2 b2 (Hoành = hoành; tung = tung; cao = cao) a3 b3 ② a b a1 b1;a2 b2 ;a3 b3 ③ a b a1 b1;a2 b2 ;a3 b3 ④ ma nb ma1 nb1;ma2 nb2 ;ma3 nb3 ⑤ k.a ka1 ka2 ka3 ,k ¡ 1
- 4. Tích vô hướng của hai vectơ: ① a.b a . b cos a,b a1b1 a2b2 a3b3 2 2 2 ② a a1 a2 a3 2 2 2 ③ AB xB xA yB yA zB zA a.b a b a b a b ④ cos a,b 1 1 2 2 3 3 2 2 2 2 2 2 a . b a1 a2 a3 . b1 b2 b3 ⑤ a b a.b 0 a1b1 a2b2 a3b3 0 5. Tích có hướng của hai vectơ: a a a a a a a,b a b 2 3 ; 3 1 ; 1 2 a b a b ;a b a b ;a b a b ① 2 3 3 2 3 1 1 3 1 2 2 1 b2 b3 b3 b1 b1 b2 ② a,b b,a ③ a,b a và a,b b ④ a,b a . b .sin a,b a a a ⑤ a cùng phương b a,b 0 1 2 3 (nếu b b b 0 ) 1 2 3 b1 b2 b3 ⑥ a , b , c đồng phẳng a,b .c 0 ⑦ A , B , C thẳng hàng AB cùng phương AC AB, AC 0 . ⑧ A , B , C , D đồng phẳng AB, AC .AD 0 6. Ứng dụng tích có hướng của hai vectơ: 1 ① Diện tích tam giác: S AB, AC ABC 2 2
- ② Thể tích khối hộp: V AB, AD .AA ABCD.A B C D 1 ③ Thể tích khối tứ diện: V AB, AC .AD ABCD 6 CÂU HỎI TRẮC NGHIỆM Câu 1. Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC biết A 3;1;2 , B 1; 4;2 , C 2;0; 1 .Tìm tọa độ trọng tâm G của D ABC. A. G 2; 1;1 . B. G 6; 3;3 . C. G 2;1;1 D. G 2; 1;3 . Câu 2. Trong mặt không gian tọa độ Oxyz , cho tam giác ABC với A 2;1; 3 , B 5;3; 4 , C 6; 7;1 . Tọa độ trọng tâm G của D là A. G 6; 7;1 . B. G 3; 1; 2 . C. G 3;1; 2 . D. G 3;1;2 . Câu 3. Trong không gian Oxyz , cho hai điểm A 3;4;2 , B 1; 2;2 và G 1;1;3 là trọng tâm của tam giác ABC . Tọa độ điểm C là. A. C 1;1;5 . B. C 1;3;2 . C. C 0;1;2 . D. C 0;0;2 . Câu 4. Trong không gian với hệ toạ độ Oxyz cho 4 điểm M 1;2;3 , N 1;0;4 , P 2; 3;1 , Q 2;1;2 . Cặp véctơ nào sau đây là véc tơ cùng phương? A. OM và NP . B. MP và NQ . C. MQ và NP . D. MN và PQ . Câu 5. Trong không gian tọa độ Oxyz, cho ba véctơ a(3;0;1), b(1; 1; 2), c(2;1; 1) . Tính T a. b c . A. T 3. B. T 6. C. T 0. D. T 9. Câu 6. Cho véctơ a 1;3;4 , tìm véctơ b cùng phương với véctơ a . A. b 2;6;8 . B. b 2; 6; 8 . C. b 2; 6;8 . D. b 2; 6; 8 . Câu 7. Trong không gian với hệ tọa độ Oxyz , cho hai điểm A 3;2;1 , B 1;0;5 . Tìm tọa độ trung điểm của đoạn AB . A. I 2;2;6 B. I 2;1;3 C. I 1;1;3 D. I 1; 1;1 3
- Câu 8. Trong không gian ,cho A 1;1;0 , B 3; 1;2 . Tọa độ điểm C sao cho B là trung điểm của đoạn thẳng AC là A. C 4; 3;5 . B. C 1;3; 2 . C. C 2;0;1 .D. C 5; 3;4 . Câu 9. Trong không gian Oxyz với các véctơ đơn vị trên các trục là i , j , k . Cho M 2; 1;1 . Khi đó OM bằng A. k j 2i . B. 2k j i . C. 2i j k .D. k j 2i . Câu 10. Trong không gian với hệ tọa độ O; i; j; k , cho véctơ OM j k . Tìm tọa độ điểm M . A. M 1; 1; 0 . B. M 1; 1 . C. M 0;1; 1 . D. M 1;1; 1 . Câu 11. Trong không gian với hệ tọa độ Oxyz , cho ba véctơ a 5;7;2 , b 3;0;4 , c 6;1; 1 . Tìm tọa độ của véctơ m 3a 2b c. A. m 3; 22;3 . B. m 3;22;3 . C. m 3;22; 3 . D. m 3;22; 3 . Câu 12. Trong không gian Oxyz cho các điểm A 1;2; 3 , B 2; 1;0 . Tìm tọa độ của véctơ AB. A. AB 1; 1;1 . B. AB 1;1; 3 . C. AB 3; 3;3 . D. AB 3; 3; 3 . Câu 13. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A 1;2; 1 , B 2; 1;3 , C 3;5;1 . Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. A. D 4;8; 5 . B. D 2;2;5 . C. D 4;8; 3 . D. D 2;8; 3 . Câu 14. Cho ba điểm A 3,1,0 ; B 2,1, 1 ; C x, y, 1 . Tính x, y để 2 G 2, 1, là trọng tâm tam giác ABC 3 A. x 2, y 1 B. x 2, y 1 C. x 2, y 1 D. x 1, y 5 4
- Câu 15. Trong không gian Oxyz , cho ba véctơ: a 2; 5;3 , 1 b 0;2; 1 , c 1;7;2 . Tọa độ véctơ x 4a b 3c là 3 5 53 121 17 A. x 11; ; . B. x 5; ; . 3 3 3 3 1 55 1 1 C. x 11; ; . D. x ; ;18 . 3 3 3 3 Câu 16. Trong hệ tọa độ Oxyz cho u x;0;1 , v 2; 2;0 . Tìm x để góc giữa u và v bằng 60 ? A. x 1. B. x 1. C. x 0 . D. x 1. Câu 17. Trong không gian với hệ tọa độ Oxyz , cho OM 2 j k , ON 2 j 3i . Tọa độ của MN là A. 3;0;1 . B. 1;1;2 . C. 2;1;1 . D. 3;0; 1 . Câu 18. Cho ba véctơ không đồng phẳng a 1; 2; 3 , b 1; 3;1 , c 2; 1; 4 . Khi đó véctơ d 3; 4; 5 phân tích theo ba véctơ không đồng phẳng a , b , c là A. d 2a 3b c . B. d 2a 3b c . C. d a 3b c .D. d 2a 3b c . Câu 19.Trong không gian với hệ tọa độ Oxyz cho A 1; 2; 3 , B 1; 0; 2 . Tìm tọa độ điểm M thỏa mãn AB 2.MA ? 7 A. M 2; 3; . B. M 2; 3; 7 . 2 7 C. M 4; 6; 7 . D. M 2; 3; . 2 Câu 20.Trong không gian với hệ tọa độ Oxyz cho các véctơ a 1;2;1 , b 2;3;4 , c 0;1;2 , d 4;2;0 . Biết d x.a y.b z.c . Tổng x y z là A. 2. B. 3. C. 5. D. 4. Câu 21.Trong không gian với hệ trục tọa độ Oxyz cho ba véctơ a 1;1;0 , b 1;1;0 , c 1;1;1 . Mệnh đề nào dưới đây sai? A. b c. B. a 2. C. b a. D. c 3. 5
- Câu 22. Trong không gian với hệ tọa độ Oxyz , cho hai điểm A , B với OA 2; 1;3 , OB 5;2; 1 . Tìm tọa độ của véctơ AB . A. AB 3;3; 4 . B. AB 2; 1;3 . C. AB 7;1;2 . D. AB 3; 3;4 . Câu 23. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D có A 1;2; 1 , C 3; 4;1 , B 2; 1;3 và D 0;3;5 . Giả sử tọa độ D x; y; z thì giá trị của x 2y 3z là kết quả nào dưới đây? A. 1. B. 0. C. 2. D. 3. Câu 24. Trong không gian với hệ tọa độ Oxyz , cho hai điểm A 1;1;2 , B 1;3; 9 . Tìm tọa độ điểm M thuộc Oy sao cho ABM vuông tại M . M 0;2 2 5;0 M 0;2 5;0 A. . B. . M 0;2 2 5;0 M 0;2 5;0 M 0;1 5;0 M 0;1 2 5;0 C. . D. . M 0;1 5;0 M 0;1 2 5;0 Câu 25. Trong không gian Oxyz , cho u 1;3;2 , v 3; 1;2 khi đó u.v bằng A. 10. B. 2 . C. 3 . D. 4 . Câu 26. Trong không gianvới hệ trục Oxyz , cho tam giác ABC có A 1;1;0 , B 0; 1;1 , C 1;2;1 . Khi đó diện tích tam giác ABC là 1 11 3 A. 11 . B. . C. . D. . 2 2 2 Câu 27. Trong không gian với hệ tọa độ Oxyz cho hai vecto a 2;1;0 , b 1;0; 2 . Tính cos a,b 2 2 A. cos a,b .B. cos a,b . 25 5 2 2 C. cos a,b . D. cos a,b . 25 5 6
- Câu 28. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A 1;2;1 , B 0;0; 2 , C 1;0;1 , D 2;1; 1 . Tính thể tích tứ diện ABCD. 1 2 4 8 A. . B. . C. . D. . 3 3 3 3 Câu 29. Trong không gian Oxyz, cho ba điểm A(2; 1;1) , B( 1; 3; 1) và C(5; 3;4). Tính tích vô hướng hai vectơ AB.BC . A. AB.BC 48 .B. AB.BC 48 . C. AB.BC 52 .D. AB.BC 52 Câu 30. Trong không gian Oxyz cho A 1;0; 2 ; B 2;1; 3 ;C 2; 3; m . Định m để ba điểm thẳng hàng? A. m 1. B. m 1. C. m 5 .D. m 5 . Câu 31. Trong không gian Oxyz cho a 1; 3; 2 , b 2,4; m . Định m để hai vectơ a,b vuông góc với nhau ? A. m 7 . B. m 7 . C. m 14 .D. m 2 . Câu 32. Trong không gian Oxyz cho A 1; 4;9 , B 5; 8; 3 và O 0;0;0 . Khi đó tam giác OAB là A. Tam giác cân tại B . B. Tam giác vuông tại A . C. Tam giác đều. D. Tam giác vuông cân tại O . Câu 33.Trong không gian với hệ tọa độ Oxyz , tọa độ điểm G đối xứng với điểm G 5; 3;7 qua trục Oy là : A. G 5; 3; 7 . B. G 5;3;7 . C. G 5;3; 7 . D. G 5;0; 7 . Câu 34.Trong không gian với hệ tọa độ Oxyz , cho điểm M 1; 2;3 . Tọa độ hình chiếu vuông góc của M lên mặt phẳng tọa độ Oxy là: A. 1;0;3 . B. 1; 2;0 . C. 1;0;0 . D. 0; 2;3 . Câu 35. Trong không gian với hệ trục tọa độ Oxyz , cho hình bình hành ABCD với A(2;0;0) , B(0;2;0), C(0;0;2) và D(x; y; z) . Tính diện tích hình bình hành ABCD . 3 3 A. 2 3 . B. . C. . D. . 4 3 2 3 7
- Câu 36. Trong không gian với hệ tọa độ Oxyz , cho a 5;7;2 ; b 3;0;4 ; c 6;1; 1 . Tọa độ của véctơ n 5a 6b 4c 3i là: A. n 16;39;30 . B. n 16;39; 26 . C. n 16; 39;30 . D. n 16;39;26 . Câu 37.Trong không gian Oxyz cho điểm A 1;0;1 . Tìm tọa độ điểm C thỏa mãn AC 0;6;1 . A. C 1;6;2 . B. C 1;6;0 . C. C 1; 6; 2 .D. C 1;6; 1 . Câu 38. Trong không gian với hệ tọa độ Oxyz , cho hai vectơ a 2;1; 3 và b 1;3; 4 . Vectơ u 2a b có tọa độ là: A. 5; 1;2 B. 5; 1; 2 C. 5; 1;2 D. 5;1; 2 Câu 39. Trong không gian với hệ tọa độ Oxyz , cho hai điểm M (2;1;- 2), N (4;- 5;1). Độ dài đoạn thẳng MN bằng A. 41 . B. 49 . C. 7 . D. 7 . Câu 40. Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC với A 1;1;1 , B 1;1; 0 , C 3;1; 2 . Chu vi của tam giác ABC bằng: A. 4 5 .B. 4 5 . C. 3 5 .D. 2 2 5 . Câu 41. Trong không gian Oxyz , cho a 1; 3;2 , b 2,4;m . Định m để hai vectơ a,b vuông góc với nhau. A. m 7 . B. m 7 . C. m 14 . D. m 2 . Câu 42. Trong không gian tọa độ Oxyz , cho hai véc tơ a a1,a2 ,a3 , b b1,b2 ,b3 khác 0. cos a,b là biểu thức nào sau đây? a b a b a b a b a b a b A. 1 1 2 2 3 1 .B. 1 2 2 3 3 1 . a . b a . b a b a b a b a b a b a b C. 1 1 2 2 3 3 .D. 1 3 2 1 3 2 . a . b a . b Câu 43. Cho ba điểm A 1;0; 2 , B 2;1; 1 , C 1; 2;2 . Tìm tọa độ điểm M sao cho AM 2AB 3BC ? A. 2; 7;13 B. 0; 7;9 8
- C. 0; 7;13 D. 0; 7; 13 Câu 44. Cho a 2i 3 j k . Tọa độ của vectơ a là A. 2;3; 1 . B. 2; 3;1 . C. 2;3;1 . D. 2; 3; 1 . Câu 45. Trong không gian Oxyz cho điểm M 1; 2;3 . Tìm tọa độ điểm N đối xứng với điểm M qua mặt phẳng Oxy . A. N 1;2; 3 . B. N 1; 2;0 . C. N 1;2;3 . D. N 1; 2; 3 . Câu 46. Cho các điểm A 1;0;3 , B 2;3; 4 , C 3;1;2 . Tìm tọa độ điểm D sao cho ABCD là hình bình hành. A. D 4; 2;9 . B. D 4;2;9 . C. D 4; 2;9 . D. D 4;2; 9 . Câu 47. Cho u 3j 2i 5k , tọa độ của vectơ u là A. 3;2;5 . B. 2; 3;5 . C. 3; 2; 5 .D. 2;3; 5 . Câu 48. Trong không gian Oxyz cho hai điểm A 1;3; 1 , B 3; 1;5 . Tọa độ điểm M thỏa mãn MA 3MB là 7 1 5 13 7 1 A. M ; ;3 . B. M 4; 3;8 . C. M ; ;1 . D. M ; ;3 . 3 3 3 3 3 3 Câu 49. Trong không gian Oxyz Cho a 2 ;0; 1 ,b 1; 3; 2 . Trong các khẳng định sau khẳng định nào đúng ? a, b 3; 3; 6 .B. a, b 3; 3; 6 . A. . C. a, b 1; 1; 2 .D. a, b 1; 1; 2 Câu 50. Trong không gian Oxyz cho điểm M 1;2;3 . Hình chiếu vuông góc của điểm M lên trục tung là điểm nào dưới đây? A. M1 0;2;0 . B. M 2 1;2; 3 . C. M 3 1;0;3 . D. M 4 0;0;3 . Câu 51. Cho u 1;1;0 ,v 0; 1;0 . Tính giữa hai vectơ u và v . A. 35 . B. 45 . C. 145 . D. 135 . Câu 52. Trong không gian Oxyz , cho a 1; 2;5 ,b 0;2; 1 . Nếu c a 4b thì c có tọa độ là A. 1;0;4 . B. 1;6;1 . C. 1; 4;6 . D. 1; 10;9 . Câu 53. Trong không gian Oxyz cho hai vectơ a 0;3;1 , b 3;0; 1 . Tính cos a,b . 1 1 A. cos a,b .B. cos a,b . 100 10 9
- 1 1 C. cos a,b .D. cos a,b 10 100 Câu 54. Trong không gian Oxyz , cho u 2; 3;4 , v 3; 2;2 khi đó u.v bằng A. 20. B. 8 . C. 46 . D. 2 2 . Câu 55. Trong không gian với hệ tọa độ Oxyz , cho hai vecto a 1;0; 2 và b 2; 1;3 . Tích có hướng của hai vecto a và b là một vecto có tọa độ là: A. 2;7;1 . B. 2;7; 1 . C. 2; 7;1 . D. 2; 7; 1 . Câu 56. Trong không gian với hệ trục tọa độ Oxyz , cho điểm M . Gọi H a;b;c là hình chiếu vuông góc của M lên mặt 5; 1; 2 phẳng Oxy . Tính tổng S a b c . A. S 1. B. S 5 . C. S 4. D. S 6 . Câu 57. Trong không gian Oxyz , cho các vectơ a 1;1; 2 , b 3;0;1 và c 2;3; 1 . Tọa độ của vectơ u a b c là A. u 6;4; 4 . B. u 2;4; 4 . C. u 6; 2; 4 . D. u 6;4; 2 . Câu 58. Cho a 1;0; 3 ; b 2;1;2 . Khi đó a;b có giá trị là A. 8 .B. 3 . C. 74 . D. 4 . Câu 59. Góc tạo bởi hai véc tơ a 2;2;4 ;b 2 2; 2 2;0 bằng A. 45 .B. 90 . C. 135 . D. 30 . Câu 60. Cho 3 điểm A 1; 2;0 , B 1;n;1 , C 0;5;m . Xác định n,m để G 0;1; 1 là trọng tâm của tam giác ABC. A. n 1,m 4 . B. n 0,m 4. C. n 0,m 2. D. n 1,m 4 KIỂM TRA THỬ Trong không gian Oxyz, cho hai véc tớ u (1; 2;3), v (0; 1;2), Câu 1: Toạ độ của véc tơ x u v là A.(1; -3; 5) B. (-1; 1; -1) C.(1; -1; 1) D.(1; 3; 5) Câu 2: Toạ độ của véc tơ a 2u v là A.(2; -1; 1) B. (2; -3; 1) C.(2; -3; 4) D.(2; 3; 1) Câu 3: Tích vô hướng của hai véc tơ u, v là A. u.v (0;2;6) B. u.v 8 C. u.v 1.0 2( 1) 3.2 9 D. u.v ( 1; 2; 1) Câu 4: Độ dài véc tơ hiệu u v là: 10
- A. u v 3 B. u v 1 C. u v 3 D. u v 14 5 Câu 5. Cosin góc giữa hai véc tơ u, v là cos(u,v) bằng 70 8 8 8 A. B. C. D. 70 70 70 8 Trong không gian Oxyz, cho điểm M(1; -2; 3) Câu 6. Toạ độ điểm M’ là hình chiếu vuông góc của M trên mặt phẳng Oxz là A.(1; -2; 0) B. (1; 0; 3) C.(0; -2; 3) D.(0; 0; 3) Câu 7. Toạ độ điểm M1 là hình chiếu vuông góc của M trê trục Oy là A.(0; -2; 0) B. (1; 0; 3) C.(0; -2; 3) D.(0; 0; 3) Câu 8. Toạ độ điểm N đối xứng với M qua mặt phẳng Oxy là A.(-1; 2; 0) B. (1; -2; -3) C.(-1; 2; 3) D.(-1; 2; -3) Câu 9. Toạ độ điểm P đối xứng với M qua trục Oz là A.(-1; 2; 0) B. (0; 0; -3) C.(-1; 2; 3) D.(-1; 2; -3) Câu 10. Toạ độ điểm Q đối xứng với M qua gốc toạ độ O là A.(-1; 2; -3) B. (1; 2; -3) C.(-1; 2; 3) D.(-1; 2; 0) Trong không gian Oxyz, cho hai điểm A(2; -2; 1) và B(0; 1; 2) AB Câu 11. Toạ độ của véc tơ là A. B. C. AB (2; 1;3) D. AB ( 2;3;1) AB (2; 3; 1) AB (0; 2;2) Câu 12. Toạ độ trung điểm M của đoạn thẳng AB là 3 1 B. 1 3 D. M 0; 1;1 A. M 1; ; C. M 1; ; 2 2 3 1 2 2 M 1; ; 2 2 Câu 13. Khoảng cách giữa hai điểm A và B là A. AB 14 B. AB 14 C. AB 2 D. AB 8 Câu 14. Toạ độ điểm C thuộc trục Oz sao cho tam giác CAB cân tại đỉnh C là A. M 0;0;2 B. M 1;0;0 C. M 0;0; 2 D. M 0; 1;1 Câu 15. Diện tích tam giác OAB bằng 3 5 3 5 15 5 3 B. C. D. A. 2 2 Câu 16. Toạ độ điểm M thuộc mặt phẳng Oxy sao cho A, B, M thẳng hàng là A. M(4; 5; 0). B. M( 4; -5; 0). C. M(2; -3; 0). D. M(0; 0; 1). Câu 17. Toạ độ điểm C đối xứng của B qua tâm A là A. M 4; 5;0 B. M 2; 3;0 C. M 2;4;3 D. M 0; 1;1 Câu 18. điểm I thuộc mặt phẳng (Oxy) ta có IA = kIB, tỉ số k là 11
- A. 2 B. – 0,5 C. 0,5 D. - 2 Câu 19. Trong không gian Oxyz cho tứ diện ABCD với A(0;0;1); B(0;1;0); C(1;0;0) và D(- 2;3;-1). Thể tích của ABCD là: 1 1 A. V đvtt B. V đvtt 3 2 1 1 C. V đvtt D. V đvtt 6 4 Câu 20. Cho A 1;0;0 ,B 0;1;0 ,C 0;0;1 ,D 2;1; 1 . Thể tích của khối tứ diện ABCD là: 1 3 A. đvtt B. đvtt 2 2 C. 1 đvtt D. 3 đvtt Câu 21. Cho A 1;0;3 ,B 2; 2;0 ,C 3;2;1 . Diện tích tam giác ABC là: A. 62 B. 2 62 C. 12 D. 6 Câu 22. Cho A 2; 1;3 ,B 4;0;1 ,C 10;5;3 . Độ dài phân giác trong của góc B là: A. 5 B. 7 5 C. D. 2 5 2 Câu 23. Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC với A 1;2; 1 , B 2; 1;3 , C 4;7;5 . Độ dài đường cao của tam giác ABC hạ từ A là: 110 1110 A. B. 57 52 1110 111 C. D. 57 57 Câu 24. Cho A 2;0;0 ,B 0;3;0 ,C 0;0;4 . Diện tích tam giác ABC là: 61 A. B. 20 65 C. 13 D. 61 Câu 25. Trong hệ trục tọa độ Oxyz cho hình bình hành ABCD với A 1;0;1 , B 2;1;2 và 3 3 giao điểm của hai đường chéo là I ;0; . Diện tích của hình bình hành ABCD là: 2 2 A. 5 B. 6 C. 2 D. 3 Câu 26. Trong không gian Oxyz cho các điểm A 1;1; 6 , B 0;0; 2 , C 5;1;2 và D' 2;1; 1 . Nếu ABCD.A 'B'C'D' là hình hộp thì thể tích của nó là: A. 26 (đvdt) B. 38 (đvdt) C. 40 (đvdt) D. 42 (đvdt) 12