Đề khảo sát học sinh giỏi môn Toán 7 - Phòng GD & ĐT huyện Duy Xuyên (Có đáp án)
Bạn đang xem tài liệu "Đề khảo sát học sinh giỏi môn Toán 7 - Phòng GD & ĐT huyện Duy Xuyên (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_khao_sat_hoc_sinh_gioi_mon_toan_7_phong_gd_dt_huyen_duy_x.doc
Nội dung text: Đề khảo sát học sinh giỏi môn Toán 7 - Phòng GD & ĐT huyện Duy Xuyên (Có đáp án)
- PHÒNG GD & ĐT DUY XUYÊN ĐỀ KHẢO SÁT HỌC SINH GIỎI ĐỀ CHÍNH THỨC MÔN: TOÁN 7 Thời gian làm bài: 120 phút Câu 1: (2đ) Thực hiện phép tính sau một cách hợp lí: 1 1 1 3 3 3 3 5 3 7 13 . 4 16 64 256 1/ A = 2 2 2 1 1 1 1 8 3 7 13 4 16 64 2.522 9.521 5.(3.715 19.714 ) : 2/ B = 2510 716 3.715 Câu 2: (3đ) a/ Tính giá trị của biểu thức M = (2x – 1)(2y – 1) biết x + y = 10 và xy = 16 1 b/ Tìm x, y để biểu thức N = (x + 2)2010 + y - 10 đạt giá trị nhỏ nhất. 5 c/ Cho đa thức f(x) = ax 2 + bx + c, xác định a, b, c biết f(-2) = 0; f(2) = 0 và a là số lớn hơn c ba đơn vị Câu 3: (1,5đ) Cho 4 số nguyên dương a, b, c, d trong đó b là trung bình cộng của a và c đồng thời 1 1 1 1 a c . Chứng minh c 2 b d b d Câu 4: (2,5đ) Cho ABC (AB < AC), qua trung điểm D của cạnh BC vẽ đường thẳng vuông góc với đường phân giác trong của góc A, nó cắt các đường thẳng AB, AC lần lượt tại M và N. Qua B vẽ đường thẳng Bx song song với AC, Bx cắt MN tại E. a/ Chứng minh AMN và BME là những tam giác cân. b/ Chứng minh BM = CN c/ Tính AM và BM theo b và c biết AC = b và AB = c. Câu 5: (1,0đ) Cho một điểm M bất kì trong hình chữ nhật ABCD. Chứng minh: MA2 + MC2 = MB2 + MD2 *=*=*=*=*= Hết =*=*=*=*=*
- ĐÁP ÁN & BIỂU ĐIỂM 1a/ 1 1 1 3 1 1 1 1 1,5đ 4 4 16 64 5 A = 3 7 13 . 1 1 1 1 1 1 8 0,5đ 2 1 3 7 13 4 16 64 1 3 5 . 1 2 4 8 0,5đ 1b/ 521 2.5 9 5.714 3.7 19 B = 10 : 15 1,5đ 52 7 7 3 0,5đ 1 = 5: 35 0,5đ 7 2a/ M = (2x – 1)(2y – 1) = 4xy – 2x – 2y + 1 0,25đ 1,0đ = 4xy – 2(x + y) + 1 0,25đ M = 45 0,5đ 2b/ 1 0,25đ Lí luận (x + 2)2010 ≥ 0; y 0 1,0đ 5 N ≥ -10. GTNN của N là -10 0,25đ Tìm được x = -2; y = 1/5 0,5đ 2c/ Ta có f(-2) = 0 4a – 2b + c = 0 1,0đ f(2) = 0 4a + 2b + c = 0 và a – c = 3 0,25đ 4b = 0 b = 0 0,25đ Từ 8a + 2c = 0 và a – c = 3 a = 3/5 ; c = -12/5 0,5đ 3/ Vì b là trung bình cộng của a và c b = (a + c)/2 2b = a + c 0,25đ 1,5đ 1 1 1 1 1 1 b d Từ . 2bd c(b d) c 2 b d c 2 bd 0,5đ Thay 2b = a + c, ta có (a + c)d = c(b + d) 0,25đ a c ad = bc b d 0,5đ 4/ AMN cân (đ/c vừa là p/g) 0,25đ A 2,5đ BE // AC B· EM ·ANM B· ME ·ANM ( AMN cân tại A) 0,5đ B· EM B· ME BME cân tại B N B C D E M 4b/ BED = CND (g.c.g) BE = NC 0,5đ 0,75đ BM = NC (= BE) 0,25đ 4c/ Ta có AB + BM = AM = AN = AC – NC
- 1,0đ AB + BM = AC – BM 2BM = AC – AB BM = (b – c):2 0,5đ AM = AB + BM AM = (b + c):2 0,5đ 5/ Qua M kẻ HK // BC (H AB; K CD) A H B 1,0đ MA2 = MH2 + HA2 MC2 = MK2 + KC2 MA2 + MC2 = MH2 + HA2 + MK2 + KC2 M 0,25đ MB2 = MH2 + HB2 2 2 2 MD = MK + DK D C MB2 + MD2 = MH2 + HB2 + MK2 + DK2 K 0,25đ Ta có AH = DK; HB = KC 0,25đ MA2 + MC2 = MB2 + MD2 0,25đ