Đề cương ôn tập học kì 1 môn Toán Lớp 9

doc 16 trang hatrang 6520
Bạn đang xem tài liệu "Đề cương ôn tập học kì 1 môn Toán Lớp 9", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docde_cuong_on_tap_hoc_ki_1_mon_toan_lop_9.doc

Nội dung text: Đề cương ôn tập học kì 1 môn Toán Lớp 9

  1. ĐỀ CƯƠNG ÔN TẬP HKI MÔN TOÁN LỚP 9 Phần A- Đại số Chương I: CĂN BẬC HAI - CĂN BẬC BA A - LÝ THUYẾT I. ĐẠI SỐ: 1) Định nghĩa, tính chất căn bậc hai a) Với số dương a, số a được gọi là căn bậc hai số học của a. x 0 b) Với a 0 ta có x = a 2 2 x a a c) Với hai số a và b không âm, ta có: a 0) 4. A2B A B (B 0) B B 5. A B A2B (A 0, B 0) A B A2B (A 0) 9. (A, B 0, A B) B B A B A B  Bài tập:  Tìm điều kiện xác định: Với giá trị nào của x thì các biểu thức sau đây xác định: 4 1) 2x 3 2) 2 3) 4) 5 x 2 x 3 x 2 6 3 5) 3x 4 6) 1 x 2 7) 3 8) 1 2x 3x 5  Rút gọn biểu thức Bài 1 1) 12 5 3 48 2) 5 5 20 3 45 3) 2 32 4 8 5 18 4) 3 12 4 27 5 48 5) 12 75 27 6) 2 18 7 2 162 1 1 7) 3 20 2 45 4 5 8) ( 2 2) 2 2 2 9) 5 1 5 1 1 1 2 2 10) 11) 12) 2 2 5 2 5 2 4 3 2 4 3 2 1 2 13) ( 28 2 14 7) 7 7 8 14) ( 14 3 2) 2 6 28 15) ( 6 5) 2 120 16) (2 3 3 2) 2 2 6 3 24 17) (1 2) 2 ( 2 3) 2 18) ( 3 2) 2 ( 3 1) 2 19) ( 5 3) 2 ( 5 2) 2 20) ( 19 3)( 19 3) 2 7 5 7 5 21) 4x (x 12) (x 2) 22) 7 5 7 5
  2. 23) x 2y (x 2 4xy 4y 2 ) 2 (x 2y) Bài 2 2 2 2 2 2 1) 3 2 3 2 2) 2 3 2 3 3) 5 3 2 5 3 4) 8 2 15 - 8 2 15 5) 5 2 6 + 8 2 15 6) 5 5 4 2 3 4 2 3 3 2 2 3 8  Giải phương trình: Phương pháp: 2 2 A 0 A B A B ; A B 0 B 0 A 0 (hay B 0) B 0 A B A B 2 A B A B A 0 A 0 B 0 A B hay A B A B A B A B hay A B A 0 A B A B hay A B A B 0 B 0 Chú ý:  |A|=B ; |A|=A khi A ≥ 0; |a|=- A khi A≤ 0. Bài 1. Giải các phương trình sau: 1) 2x 1 5 2) x 5 3 3) 9(x 1) 21 4) 2x 50 0 5) 3x 2 12 0 6) (x 3) 2 9 7) 4x 2 4x 1 6 8) (2x 1) 2 3 9) 4x 2 6 10) 4(1 x) 2 6 0 11) 3 x 1 2 12) 3 3 2x 2 Bài 2. Giải các phương trình sau: a) (x 3)2 3 x b) 4x2 20x 25 2x 5 c) 1 12x 36x2 5 Bài 3. Giải các phương trình sau: a) 2x 5 1 x b) x2 x 3 x c) 2x2 3 4x 3 d) 2x 1 x 1 e) x2 x 6 x 3 f) x2 x 3x 5 Bài 4. Giải các phương trình sau: a) x2 x x b) 1 x2 x 1 c) x2 4x 3 x 2 d) x2 1 x2 1 0 e) x2 4 x 2 0 f) 1 2x2 x 1 Bài 5. Giải các phương trình sau: a) x2 2x 1 x2 1 b) 4x2 4x 1 x 1 c) x4 2x2 1 x 1 1 d) x2 x x e) x4 8x2 16 2 x f) 9x2 6x 1 11 6 2 4 Bài 6. Giải các phương trình sau: a) 3x 1 x 1 b) x2 3 x 3 c) 9x2 12x 4 x2 d) x2 4x 4 4x2 12x 9 Bài 7. Giải các phương trình sau: a) x2 1 x 1 0 b) x2 8x 16 x 2 0 c) 1 x2 x 1 0 d) x2 4 x2 4x 4 0
  3. CÁC BÀI TOÁN RÚT GỌN: A.Các bước thực hiên:  Tìm ĐKXĐ của biểu thức: là tìm TXĐ của từng phân thức rồi kết luận lại. Phân tích tử và mẫu thành nhân tử (rồi rút gọn nếu được) Quy đồng, gồm các bước: + Chọn mẫu chung : là tích các nhân tử chung và riêng, mỗi nhân tử lấy số mũ lớn nhất. + Tìm nhân tử phụ: lấy mẫu chung chia cho từng mẫu để được nhân tử phụ tương ứng. + Nhân nhân tử phụ với tử – Giữ nguyên mẫu chung. Bỏ ngoặc: bằng cách nhân đa thức hoặc dùng hằng đẳng thức. Thu gọn: là cộng trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử ( mẫu giữ nguyên). Rút gọn. B.Bài tập luyện tập: x 2x x Bài 1 Cho biểu thức : A = với ( x >0 và x ≠ 1) x 1 x x a) Rút gọn biểu thức A; b) Tính giá trị của biểu thức A tại x 3 2 2 . a 4 a 4 4 a Bài 2. Cho biểu thức : P = ( Với a 0 ; a 4 ) a 2 2 a a) Rút gọn biểu thức P; b)Tìm giá trị của a sao cho P = a + 1. x 1 2 x x x Bài 3: Cho biểu thức A = x 1 x 1 a)Đặt điều kiện để biểu thức A có nghĩa; b)Rút gọn biểu thức A; c)Với giá trị nào của x thì A< - 1. 1 1 x Bài 4: Cho biểu thức : B = 2 x 2 2 x 2 1 x a) Tìm TXĐ rồi rút gọn biểu thức B; b) Tính giá trị của B với x =3; 1 c) Tìm giá trị của x để A . 2 x 1 2 x 2 5 x Bài 5: Cho biểu thức : P = x 2 x 2 4 x a) Tìm TXĐ; b) Rút gọn P; c) Tìm x để P = 2. 1 1 a 1 a 2 Bài 6: Cho biểu thức: Q = ( ) : ( ) a 1 a a 2 a 1 a) Tìm TXĐ rồi rút gọn Q; b) Tìm a để Q dương; c) Tính giá trị của biểu thức biết a = 9- 4 5 . 15 x 11 3 x 2 x 3 Bài 7 : Cho biểu thức : K = x 2 x 3 1 x x 3 1 a) Tìm x để K có nghĩa; b) Rút gọn K; c) Tìm x khi K= ; 2 d) Tìm giá trị lớn nhất của K.
  4. x 2 x 2 x 2 2x 1 Bài 8 : Cho biểu thức: G= . x 1 x 2 x 1 2 a)Xác định x để G tồn tại; b)Rút gọn biểu thức G; c)Tính giá trị của G khi x = 0,16; d)Tìm gía trị lớn nhất của G; e)Tìm x Z để G nhận giá trị nguyên; f)Chứng minh rằng : Nếu 0 0 với mọi x≥ 0 và x ≠ 1. 1 1 a 2 1 1 Bài 10 : cho biểu thức Q= . 1 2 2 2 a 2 2 a 1 a a a)Tìm a dể Q tồn tại; b)Chứng minh rằng Q không phụ thuộc vào giá trị của a. Bài 11: Cho biểu thức : x 3 2x 1 x A= . xy 2y 2 xy 2 y x x 1 x a)Rút gọn A b)Tìm các số nguyên dương x để y = 625 và A 0. Nghịch biến trên R khi a 0 ta có tan = a Khi a < 0 ta có tan ’ a ( ’ là góc kề bù với góc
  5.  Các dạng bài tập thường gặp: - Dạng1: Xác dịnh các giá trị của các hệ số để hàm số đồng biến, nghịch biến, Hai đường thẳng song song; cắt nhau; trùng nhau. Phương pháp: Xem lại lí thuyết - Dạng 2: Vẽ đồ thị hàm số y = ax + b , , Xác định toạ độ giao điểm của hai đường thẳng (d1): y = ax + b; (d2): y = a x + b , , Phương pháp: Đặt ax + b = a x + b giải phương trình ta tìm được giá trị của x; thay giá trị của x vào (d1) hoặc (d2) ta tính được giá trị của y. Cặp giá trị của x và y là toạ độ giao điểm của hai đường thẳng. Tính chu vi - diện tích của các hình tạo bởi các đường thẳng: Phương pháp: +Dựa vào các tam giác vuông và định lý Py- ta - go để tính độ dài các đoạn thẳng không tính trực tiếp được. Rồi tính chu vi tam giác bằng cách cộng các cạnh. + Dựa vào công thức tính diện tích tam giác để tính S. - Dạng 3: Tính góc tạo bởi đường thẳng y = ax + b và trục Ox Xem lí thuyết. - Dạng 4: Điểm thuộc đồ thị; điểm không thuộc đồ thị: Phương pháp: Ví dụ: Cho hàm số bậc nhất: y = ax + b. Điểm M (x1; y1) có thuộc đồ thị không? Thay giá trị của x1 vào hàm số; tính được y0. Nếu y0 = y1 thì điểm M thuộc đồ thị. Nếu y0 y1 thì điểm M không thuộc đồ thị. - Dạng 5: Viết phương trình đường thẳng ( xác định hệ số a và b của hàm số y=ax+b) Phương pháp chung: Gọi đường thẳng phải tìm có dạng (hoặc công thức của hàm số ): y=ax+b Căn cứ vào giả thiết để tìm a và b. Ví dụ: Viết phương trình đường thẳng y = ax + b đi qua điểm P (x0; y0) và điểm Q(x1; y1). Phương pháp: + Thay x0; y0 vào y = ax + b ta được phương trình y0 = ax0 + b (1) + Thay x1; y1 vào y = ax + b ta được phương trình y1 = ax1 + b (2) + Giải hệ phương trình ta tìm được giá trị của a và b. + Thay giá trị của a và b vào y = ax + b ta được phương trình đường thẳng cần tìm. - Dạng 6: Chứng minh đường thẳng đi qua một điểm cố định hoặc chứng minh đồng quy: 2 2 Ví dụ: Cho các đường thẳng : (d1) : y = (m - 1) x + m - 5 ( Với m 1; m - 1 ) (d2) : y = x +1 (d3) : y = - x +3 a) C/m rằng khi m thay đổi thì d1 luôn đi qua 1điểm cố định . b) C/m rằng khi d1 //d3 thì d1 vuông góc d2 c) Xác định m để 3 đường thẳng d1 ;d2 ;d3 đồng qui  Bài tập: Bài 1: Cho hai đường thẳng (d1): y = ( 2 + m )x + 1 và (d2): y = ( 1 + 2m)x + 2 1) Tìm m để (d1) và (d2) cắt nhau . 2) Với m = – 1 , vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2) bằng phép tính. Bài 2: Cho hàm số bậc nhất y = (2 - a)x + a . Biết đồ thị hàm số đi qua điểm M(3;1), hàm số đồng biến hay nghịch biến trên R ? Vì sao?
  6. Bài 3: Cho hàm số bậc nhất y = (1- 3m)x + m + 3 đi qua N(1;- 1) , hàm số đồng biến hay nghịch biến ? Vì sao? Bài 4: Cho hai đường thẳng y = mx – 2 ;(m 0) và y = (2 - m)x + 4 ; (m 2) . Tìm điều kiện của m để hai đường thẳng trên: a)Song song; b)Cắt nhau . Bài 5: Với giá trị nào của m thì hai đường thẳng y = 2x + 3+m và y = 3x + 5- m cắt nhau tại một điểm 1 trên trục tung .Viết phương trình đường thẳng (d) biết (d) song song với (d’): y = x và cắt trục hoành 2 tại điểm có hoành độ bằng 10. Bài 6: Viết phương trình đường thẳng (d), biết (d) song song với (d’) : y = - 2x và đi qua điểm A(2;7). Bài 7: Viết phương trình đường thẳng đi qua hai điểm A(2; - 2) và B(- 1;3). 1 Bài 8: Cho hai đường thẳng : (d1): y = x 2 và (d2): y = x 2 2 a/ Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy. b/ Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Ox , C là giao điểm của (d1) và (d2) Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm)? Bài 9: Cho các đường thẳng (d1) : y = 4mx - (m+5) với m 0 2 2 (d2) : y = (3m +1) x +(m - 9) a; Với giá trị nào của m thì (d1) // (d2) b; Với giá trị nào của m thì (d1) cắt (d2) tìm toạ độ giao điểm Khi m = 2 c; C/m rằng khi m thay đổi thì đường thẳng (d1) luôn đi qua điểm cố định A ;(d2) đi qua điểm cố định B . Tính BA ? Bài 10: Cho hàm số : y = ax +b a; Xác định hàm số biết đồ thị của nó song song với y = 2x +3 và đi qua điểm A(1,- 2) b; Vẽ đồ thị hàm số vừa xác định - Rồi tính độ lớn góc  tạo bởi đường thẳng trên với trục Ox ? c; Tìm toạ độ giao điểm của đường thẳng trên với đường thẳng y = - 4x +3 ? d; Tìm giá trị của m để đường thẳng trên song song với đường thẳng y = (2m- 3)x +2 Bài 11 : Cho hàm số y = (m + 5)x+ 2m – 10 e) Tìm m để đồ thị đi qua điểm 10 trên trục hoành a) Với giá trị nào của m thì y là hàm số bậc nhất f) Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x - 1 b) Với giá trị nào của m thì hàm số đồng biến. c) Tìm m để đồ thị hàm số điqua điểm A(2; 3) g) Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m. d) Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9. h) Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất Bài 12: Cho đường thẳng y=2mx +3- m- x (d) . Xác định m để: a) Đường thẳng d qua gốc toạ độ f) Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2 b) Đường thẳng d song song với đ/thẳng 2y- x =5 c) Đường thẳng d tạo với Ox một góc nhọn g) Đường thẳng d cắt đồ thị Hs y= - x +7 tại một điểm có tung độ y = 4 d) Đường thẳng d tạo với Ox một góc tù h) Đường thẳng d đi qua giao điểm của hai đường e) Đường thẳng d cắt Ox tại điểm có hoành độ 2 thảng 2x - 3y=- 8 và y= - x+1
  7. Bài 13: Cho hàm số y=( 2m- 3).x+m- 5 a) Vẽ đồ thị với m=6 e) Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o b) Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi f) Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o c) Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân g) Tìm m để đồ thị hàm số cắt đường thẳng y = 3x- 4 tại một điểm trên 0y d) Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o h) Tìm m để đồ thị hàm số cắt đường thẳng y = - x- 3 tại một điểm trên 0x Bài 14 Cho hàm số y = (m - 2)x + m + 3 a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến . b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3. c)Tìm m để đồ thị hàm số y = - x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy. d)Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 2 Phần B - HÌNH HỌC Chương I. HỆ THỨC TRONG TAM GIÁC VUÔNG  Hệ thức giữa cạnh và đường cao:Hệ thức giữa cạnh và góc: +b 2 a.b, ;c 2 a.c , + a 2 b 2 c 2 , , + h 2 b, .c , + a b c + a.h b.c b 2 b, c 2 c , + .; 1 1 1 2 , 2 , + c c b b h2 b2 c2 D K D K Tỷ số lượng giác: Sin ;Cos ;Tg ;Cotg H H K D Tính chất của tỷ số lượng giác: Sin Cos Tan Cot 1/ Nếu  900 Thì: Cos Sin Cot Tan 2/Với nhọn thì 0 < sin < 1, 0 < cos < 1 *sin2 + cos2 = 1 *tan = *cot = *tan . cot =1 Hệ thức giữa cạnh và góc: + Cạnh góc vuông bằng cạnh huyền nhân Sin góc đối:b a.SinB.;c a.SinC + Cạnh góc vuông bằng cạnh huyền nhân Cos góc kề: b a.CosC.;c a.CosB + Cạnh góc vuông bằng cạnh góc vuông kia nhân Tan góc đối:b c.TanB.;c b.TanC + Cạnh góc vuông bằng cạnh góc vuông kia nhân Cot góc kề:b c.CotC.;c b.CotB Bài tập áp dụng Bài 1. Cho ABC vuông tại A, đường cao AH. a) Biết AH = 12cm, CH = 5cm. Tính AC, AB, BC, BH. b) Biết AB = 30cm, AH = 24cm. Tính AC, CH, BC, BH. c) Biết AC = 20cm, CH = 16cm. Tính AB, AH, BC, BH. d) Biết AB = 6cm, BC = 10cm. Tính AC, AH, BH, CH. e) Biết BH = 9cm, CH = 16cm. Tính AC, AB, BC, AH. Bài 2. Cho tam giác ABC vuông tại A có Bµ 600 , BC = 20cm. a) Tính AB, AC b) Kẻ đường cao AH của tam giác. Tính AH, HB, HC. Bài 3. Giải tam giác ABC vuông tại A, biết: a) AB = 6cm, Bµ 400 b) AB = 10cm, Cµ 350 c) BC = 20cm, Bµ 580 d) BC = 82cm, Cµ 420 e) BC = 32cm, AC = 20cm f) AB = 18cm, AC = 21cm Bài 4. Không sử dụng bảng số và máy tính, hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần: sin 650; cos 750; sin 700; cos 180; sin 790 Chương II. ĐƯỜNG TRÒN:
  8. .Sự xác định đường tròn: Muốn xác định được một đường tròn cần biết: + Tâm và bán kính,hoặc + Đường kính( Khi đó tâm là trung điểm của đường kính; bán kính bằng 1/2 đường kính) , hoặc + Đường tròn đó đi qua 3 điểm ( Khi đó tâm là giao điểm của hai đường trung trực của hai đoạn thẳng nối hai trong ba điểm đó; Bán kính là khoảng cách từ giao điểm đến một trong 3 điểm đó) .  Tính chất đối xứng: + Đường tròn có tâm đối xứng là tâm của đường tròn. + Bất kì đường kính vào cũng là một trục đối xứng của đường tròn.  Các mối quan hệ: 1. Quan hệ giữa đường kính và dây: + Đường kính (hoặc bán kính)  Dây Đi qua trung điểm của dây ấy. 2. Quan hệ giữa dây và khoảng cách từ tâm đến dây: + Hai dây bằng nhau Chúng cách đều tâm. + Dây lớn hơn Dây gần tâm hơn. Vị trí tương đối của đường thẳng với đường tròn: + Đường thẳng không cắt đường tròn Không có điểm chung d > R (d là khoảng cách từ tâm đến đường thẳng; R là bán kính của đường tròn). + Đường thẳng cắt đường tròn Có 2 điểm chung d 1 B.m <1 C. m 1 D. Một kết quả khác
  9. 3. Cho x là một góc nhọn , trong các đẳng thức sau đẳng thức nào đúng: A.Sinx+Cosx=1 B.Sinx=Cos(900- x) C. Tgx=Tg(900- x) D. A,B,C đều đúng 4. Cho hai đường tròn (O;4cm) , (O’;3cm) và OO’= 5cm. Khi đó vị trí tương đối của (O) và(O’) là: A. Không giao nhau B. Tiếp xúc ngồi C. Tiếp xúc trong D. Cắt nhau Câu 2(1đ): Cho hai đường tròn (O;R) và (O’;r) với R > r ; gọi d là khoảng cách OO’. Hãy ghép mỗi vị trí tương đối giữa hai đường tròn (O) và (O’) ở cột trái với hệ thức tương ứng ở cột phải để được một khẳng định đúng Vị trí tương đối của (O) và (O’) Hệ thức 1) (O) đựng (O’) 5) R- r R + r II. TỰ LUẬN (7 đ): x x 2 x Câu 1(2 đ): Cho biểu thức : P = : x 2 x 2 x 4 a. Tìm điều kiện của x để P được xác định . Rút gọn P b)Tìm x để P > 4 Câu 2(2đ): Cho hàm số : y = (m - 1)x + 2m – 5 ; ( m 1) (1) a. Tìm giá trị của m để đường thẳng có phương trình (1) song song với đường thẳng y = 3x + 1 b. Vẽ đồ thị của hàm số (1) khi m = 1,5 . Tính góc tạo bởi đường thẳng vẽ được và trục hồnh (kết quả làm tròn đến phút) Câu 3(3đ) Cho nửa đường tròn tâm O,đường kính AB. Vẽ các tiếp tuyến Ax , By cùng phía với nửa đường tròn đối với AB. Qua điểm E thuộc nửa đường tròn (E khác A và B) kẽ tiếp tuyến với nửa đường tròn, nó cắt Ax , By theo thứ tự ở C và D a)Chứng minh rằng : CD = AC + BD b)Tính số đo góc C·OD ? c)Tính : AC.BD ( Biết OA = 6cm) ĐỀ 2 Câu 1: (2,0 điểm) a. Thực hiện phép tính: 18 2 45 3 80 2 50 b. Tìm x, biết: x 2 3 Câu 2: (2,0 điểm) 1 1 2x Cho biểu thức P= : x 2 x 2 x 4 a. Tìm giá trị của x để P xác định. b. Rút gọn biểu thức P c. Tìm các giá trị của x để P <1. Câu 3: (2,0 điểm) Cho hàm số y = (m - 3) x + 2 (d1) a. Xác định m để hàm số nghịch biến trên R. b.Vẽ đồ thị hàm số khi m = 4 c. Với m = 4, tìm tọa độ giao điểm M của hai đường thẳng (d1) và (d2): y = 2x - 3 Câu 4: ( 1,5 điểm) Cho tam giác ABC có AB= 6cm, AC= 4,5cm, BC= 7,5cm. a. Chứng minh tam giác ABC vuông. b. Tính góc B, góc C, và đường cao AH. Câu 5: (2,5 điểm) Cho ( O,R ), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K. a. Chứng minh: Tam giác OKA cân tại A. b. Đường thẳng KI cắt AB tại M. Chứng minh: KM là tiếp tuyến của đường tròn (O). ĐỀ 3 Bài 1: Thực hiện phép tính: 10 15 a) 45 20 5 : 6 b) 8 12
  10. 1 Bài 2: Giải phương trình: x 5 4x 20 9x 45 3 5 2 x 2 x 2 1 x Bài 3: Cho biểu thức: P = . . Với x > 0; x ≠ 1 x 1 x 2 x 1 2 a) Rút gọn P b) Tính giá trị của P khi x = 7 4 3 . c) Tìm x để P có GTLN. Bài 4: Cho hàm số: y = f(x) = (m – 1)x + 2m – 3. a) Biết f(1) = 2 tính f(2). b) Biết f(- 3) = 0; Hàm số f(x) là hàm số đồng biến hay nghịch biến Bài 5: Cho đường tròn (O), điểm A nằm bên ngoài đường tròn, kẻ tiếp tuyến AM, AN ( M, N là các tiếp điểm). a) Chứng minh OA vuông góc MN. b) Vẽ đường kính NOC; Chứng minh CM song song AO. c) Tính các cạnh của ∆AMN biết OM = 3 cm; ) OA = 5 cm. ĐỀ 4 Bài 1: Thực hiện phép tính: 1 1 a) b) 3. 12 27 3 3 2 3 2 Bài 2: Giải phương trình: x 1 4x 4 25x 25 2 0 x 3 6 x 4 Bài 3: Cho biểu thức: P = . Với x ≥ 0; x ≠ 1 x 1 x 1 x 1 a) Rút gọn P b) Tìm x để P = - 1 c) Tìm x nguyên để P có giá trị nguyên. Bài 4: Cho hàm số: y = ax + 3.Tìm a biết a) Đồ thị hàm số song song với đường thẳng y = - 2x. Vẽ đồ thị hàm số tìm được. b) Đồ thị hàm số đi qua điểm A(2; 7) Bài 5: Cho đường nửa tròn (O), đường kính AB. Lấy điểm M trên đường tròn(O), kẻ tiếp tuyến tại M cắt tiếp tuyến tại A và B của đường tròn tại C và D; AM cắt OC tại E, BM cắt OD tại F. a) Chứng minh C· OD 900 . b) Tứ giác MÈO là hình gì? c) Chứng minh AB là tiếp tuyến của đường tròn đường đường kính CD. ĐỀ 5 Câu 1 (3,0 điểm) 1. Thực hiện các phép tính: 2 a. 144 25. 4 b. 3 1 3 1 2. Tìm điều kiện của x để 6 3x có nghĩa. Câu 2 (2,0 điểm) 1. Giải phương trình: 4x 4 3 7 2. Tìm giá trị của m để đồ thị của hàm số bậc nhất y (2m 1)x 5 cắt trục hoành tại điểm có hoành độ bằng 5. Câu 3 (1,5 điểm)
  11. x 2 x x 1 Cho biểu thức A . (với x 0; x 4 ) x 2 x x 2 x 1 1. Rút gọn biểu thức A. 2. Tìm x để A 0. Câu 4 (3,0 điểm) Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax , By của nửa đường tròn (O) tại A và B ( Ax , By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D. 1. Chứng minh tam giác COD vuông tại O; 2. Chứng minh AC.BD = R 2 ; 3. Kẻ MH  AB (H AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH. Câu 5 (0,5 điểm) 1 1 1 Cho x 2014; y 2014 thỏa mãn: . Tính giá trị của biểu thức: x y 2014 x y P x 2014 y 2014 ĐỀ 6 I . TRẮC NGHIỆM (2,0 đ): 1 Câu 1: Điều kiện của biểu thức có nghĩa là: 2x 5 5 5 5 5 A. x B. x C. x D. x 2 2 2 2 Câu 2: Giá trị biểu thức 4 2 3 là: A. 1 3 B. 3 1 C. 3 1 D. Đáp án khác Câu 3: Hàm số y = ( - 3 – 2m )x – 5 luôn nghịch biến khi: 3 3 3 A. m B. m C. m D. Với mọi giá trị của m 2 2 2 Câu 4: Đồ thị hàm số y = ( 2m – 1) x + 3 và y = - 3x + n là hai đường thẳng song song khi: 1 A. m 2 B. m 1 C. m 1 và n 3 D. m và n 3 2 Câu 5: Cho hình vẽ, sin là: AD BD B A,sin B,sin D AC AD BA AD C,sin D,sin AC BC A C 4 Câu 6: Cho tam giác ABC, góc A = 900, có cạnh AB = 6, tgB thì cạnh BC là: 3 A. 8 B. 4,5 C. 10 D. 7,5 Câu 7: Cho ( O; 12 cm) , một dây cung của đường tròn tâm O có độ dài bằng bán kính . Khoảng cách từ tâm đến dây cung là: A. 6 B. 6 3 C. 6 5 D. 18 Câu 8: Hai đường tròn ( O; R) và ( O’ ; R’) có OO’ = d. Biết R = 12 cm, R’ = 7 cm, d = 4 cm thì vị trí tương đối của hai đường tròn đó là: A. Hai đường tròn tiếp xúc nhau. B. Hai đường tròn ngoài nhau.
  12. C. Hai đường tròn cắt nhau D. Hai đường tròn đựng nhau II . TRẮC NGHIỆM (7,0 đ): Câu 9 (2,5 đ) Cho biểu thức: x x 1 x 1 ( với x 0; x 1) A : x x x x 1 x 1 x 1 a, Rút gọn biểu thức A. b, Tính giá trị biểu thức A với x 4 2 3 c, Tìm x nguyên để biểu thức A nhận giá trị nguyên. Câu 10 ( 2,0 đ) Cho hàm số y = ( 2m – 1 ) x + 3 a, Tìm m để đồ thị hàm số đi qua điểm A( 2 ; 5 ) b, Vẽ đồ thị hàm số với m tìm được ở câu a. Câu 11 ( 3,0 đ) Cho ( O ; R ) , một đường thẳng d cắt đường tròn (O) tại C và D, lấy điểm M trên đường thẳng d sao cho D nằm giữa C và M, Qua M vẽ tiếp tuyến MA, MB với đường tròn . Gọi H là trung điểm của CD, OM cắt AB tại E. Chứng minh rằng: a, AB vuông góc với OM. b, Tích OE . OM không đổi. c, Khi M di chuyển trên đường thẳng d thì đường thẳng AB đi qua một điểm cố định. Câu 12 ( 0, 5 đ) Cho x và y là hai số dương có tổng bằng 1. 1 3 Tìm GTNN của biểu thức: S x2 y2 4xy ĐỀ 7 2 Câu 1: Biểu thức ( x) được xác định khi : A. mọi x Thuộc R B. x 0 C. x = 0 D, x 0 Câu 2: Hai đường thẳng y = x + 1 và y = 2x – 2 cắt nhau tại điểm có toạ độ là: A. ( - 3;4 ) B. (1; 2 ) C. ( 3;4) D. (2 ; 3 ) 2 x y 5 Câu 3: Hệ phương trình có nghiệm là : 3x y 5 x 2 x 2 x 2 x 1 A. B. C. D. y 1 y 1 y 1 y 2 Câu 4: Điểm (- 1 ; 2 ) thuộc đồ thị hàm số nào sau đây: A. y = 2x + 1 B. y = x - 1 C. y = x + 1 D. y = - x + 1 1 x Câu 5 :Giá trị biểu thức Khi x > 1 là: x2 2x 1 1 A. 1 B. - 1 C. 1- x D. 1 x Câu 6: Nếu hai đường tròn có điểm chung thì số tiếp tuyến chung nhiều nhất có thể là: A. 4 B.3 C.2 D. 1 Câu 7 : Tam giác ABC có góc B = 450 ;góc C = 600 ; AC = a thì cạnh AB là: 1 A. a 6 B . a 6 C a 3 D a 2 2 Câu 8. Cho tam giác đều ngoại tiếp đường tròn bán kính 2 cm . Khi đó cạnh của tam giác đều là : A. 4 3 cm B. 2 3 cm C. 3cm D. 4 cm Phần II – Tự luận ( 8 điểm ) x 2 x 1 x 1 Bài 1:( 1,5 điểm) cho biểu thức A = ( ): x x 1 x x 1 1 x 2 Với x 0; x 1 a , Rút gọn biểu thức A.
  13. b, Tìm giá trị lớn nhất của A Bài 2: ( 2 điểm ) Cho hàm số y = ( m+ 1 ) x +2 (d) a, Vẽ đồ thị hàm số với m = 1 b, Tìm m để đường thẳng (d) cắt đường thẳng y = x+ 3 tại điểm có hoành độ bằng 1 Bài 3: ( 1 điểm) Tìm a,b để hệ phương trình sau có nghiệm ( 1;2) (a 1) x by 1 ax 2by 2 Bài 4: ( 2,5 điểm ) Cho nửa đường tròn (0) đường kính AB; Ax là tiếp tuyến của nửa đường tròn . Trên nửa đường tròn lấy điểm D ( D khác A,B ) tiếp tuyến tại D của (0) cắt Ax ở S. a, Chứng minh S0 // BD b, BD cắt AS ở C chứng minh SA = SC c, Kẻ DH vuông góc với AB; DH cắt BS tại E . Chứng minh E là trung điểm của DH Bài 5: ( 1 điểm ) Tìm giá trị nhỏ nhất của biểu thức M = a2 + ab + b2 - 3a - 3b + 2011 ĐỀ 8 Bài 1: (2 điểm) Thực hiện phép tính : a) A = 5 20 3 45 b) Tìm x, biết: x 3 2 2 x 9 2 x 1 x 3 Bài 2: (2 điểm) Cho biểu thức: P ( x 3)( x 2) x 3 x 2 a) Với giá trị nào của x thì biểu thức P xác định? Rút gọn biểu thức P. Bài 3: (2 điểm) Cho hàm số y = (m – 1)x + 2 (d1) a) Xác định m để hàm số đồng biến trên ¡ . b) Vẽ đồ thị hàm số khi m = 2 c) Với m = 2, tìm giao điểm của hai đường thẳng (d1) và (d2): y = 2x – 3. Câu 4: (4 điểm) Cho đường tròn tâm O đường kính BC, điểm A thuộc đường tròn. Vẽ bán kính OK song song với BA ( K và A nằm cùng phía đối với BC ). Tiếp tuyến với đường tròn (O) tại C cắt OK ở I, OI cắt AC tại H. a) Chứng minh tam giác ABC vuông tại A. b) Chứng minh rằng: IA là tiếp tuyến của đường tròn (O) c) Cho BC = 30 cm, AB = 18 cm, tính các độ dài OI, CI. d) Chứng minh rằng CK là phân giác của góc ACI. ĐỀ 9 Bài 1: (3,5 điểm) a) Tính ( 2 1) 2 b) Thực hiện phép tính: 1. ( 3 2)( 3 2) 2. 3 12 48 c) Rút gọn biểu thức 1. ( 3 1) 4 2 3 2. 5 2x 3 8x 50x 7 với x không âm d)1) Tính: A 9 17 9 17 2) Cho a, b, c là các số không âm. Chứng minh rằng: a b c ab ac bc Bài 2: (2 điểm) a) Hàm số y = 2x 3 đồng biến hay nghịch biến? Vẽ đồ thị (d) của hàm số.
  14. b) Xác định a và b của hàm số y = a.x + b, biết đồ thị của nó song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ là 5? c) Trong các điểm sau đây điểm nào thuộc, không thuộc đồ thị của hàm số xác định trong câu b? A( - 1; 3), B(1; 3) d) Xác định k để đường thẳng y = - 2x +5k và đường thẳng y = 3x - (2k +7) cắt nhau tại một điểm thuộc Ox. Bài 3:(1,5 điểm) 2 a) Cho góc nhọn α biết Cos α = . Tính Sinα ? 3 b) Giải tam giác ABC vuông tại A, biết góc B 600 , AB = 3,5 cm. Bài 4: (3,0 điểm) Cho đường tròn (0; R) đường kính AB. Lấy điểm C trên cung AB sao cho AC < BC. a)Chứng minh ABC vuông? b) Qua A vẽ tiếp tuyến (d) với đường tròn (O), BC cắt (d) tại F . Qua C vẽ tiếp tuyến (d/) với đường tròn(O) cắt ( d) tại D. Chứng minh DA = DF. c) Vẽ CH vuông góc với AB ( H thuộc AB), BD cắt CH tại K. Chứng minh K là trung điểm của CH? Tia AK cắt DC tại E. Chứng minh EB là tiếp tuyến của ( O), suy ra OE// CA? ĐỀ 10 Phần I. Trắc nghiệm khách quan (2,5 điểm) Chọn câu trả lời đúng và ghi kết quả vào bài làm Câu 1. Số nghịch đảo của số 2 2 3 là: 1 2 2 3 1 A. B. C. 3 2 2 D. 2 2 3 5 3 2 2 1 2 Câu 2. Với 0 < a < b, biểu thức  3a 2 a b có kết quả rút gọn là: a b A. 3a B. – a 3 C. – 3a D. a 3 Câu 3. Đường thẳng y = 2x - 3 không thể: A. Đi qua điểm K(2 ; 1) B. Song song với đường thẳng y = 2x C. Trùng với đường thẳng y = 2x - 3 D. Cắt đường thẳng y = 2x + 2010 3 Câu 4. Nếu 0o < x < 90o, sin x thì cosx bằng: 4 13 13 4 3 13 A. B. C. D. 16 4 4 2 Câu 5. Cho đường tròn (O ; 2cm), dây AB = 2 cm. Khoảng cách từ O đến dây AB bằng: 3 3 A. 3 cm B. cm C. 1 cm D. cm 3 2 Phần II. Tự luận (7,5 điểm) 5 x 3 5 Bài 1. (2,5 điểm) Cho biểu thức Q x 1 2 x 2 2 x 2 1. Rút gọn Q 2. Tính giá trị của Q khi x = 9 4 2 Q 3 3. Tìm x biết rằng 0 2 x 2 Bài 2. (1,5 điểm) Cho đường thẳng (d): y = x + 3a + 5 (với a là tham số) 1. Tìm a để đường thẳng (d) đi qua điểm A(2 ; 10) 2. Tìm a để đường thẳng (d) cắt đường thẳng (Δ): y = 2 – 2x tại điểm B(x ; y) thoả mãn x2 + y2 = 40.
  15. Bài 3. (3,0 điểm) Cho hình vuông ABCD có cạnh bằng 1. Vẽ một phần tư đường tròn tâm A bán kính bằng 1 nằm trong hình vuông, trên đó lấy điểm K khác B và D. Tiếp tuyến tại K với đường tròn cắt cạnh BC ở E, cắt cạnh CD ở F. 1. Chứng minh rằng: E· AF 450 2. Gọi P là giao điểm của AE và BK, Q là giao điểm của AF và DK a) Chứng minh PQ // BD b) Tính độ dài đoạn PQ 3. Chứng minh rằng: 2 2 2 EF 1 Bài 4. (0,5 điểm) Cho x ≥ –1, y ≥ 1 thoả mãn x 1 y 1 2(x y)2 10x 6y 8 . Tìm giá trị nhỏ nhất của biểu thức P = x4 + y2 – 5(x + y) + 2020. ĐỀ 11 Câu 1 (2,5 điểm). Rút gọn các biểu thức sau: 1 1) A 3 12 4 3 5 27 2) B 7 4 3 x 1 x x 1 1 3) C : (với x 0, x 1) x 1 x 1 x 1 x 1 Câu 2 (2,5 điểm). Cho hàm số y 2m 1 x 2 (1) có đồ thị là đường thẳng dm. 1) Vẽ đồ thị hàm số (1) khi m = 1. 2) Tìm m để hàm số (1) đồng biến trên ¡ . 3) Tìm m để dm đồng qui với hai đường thẳng d1: y = x + 4 và d2: y = - 2x + 7. Câu 3 (1,5 điểm). Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 3, AC = 4. 1) Tính độ dài cạnh BC. 2) Tính diện tích tam giác ABH. Câu 4 (2,5 điểm). Cho tam giác ABC vuông tại A có đường cao AH. Vẽ đường tròn tâm A bán kính AH và kẻ thêm đường kính HD của đường tròn đó. Từ D kẻ tiếp tuyến với đường tròn, cắt AC kéo dài tại E. 1) Chứng minh rằng tam giác BEC là tam giác cân tại B. 2) Chứng minh rằng BE là tiếp tuyến của đường tròn tâm A bán kính AH. Câu 5 (1,0 điểm).Tính giá trị biểu thức D 3 70 4901 3 70 4901 . ĐỀ 10 Bài 1: (1.5 điểm) Tính giá trị của biểu thức : 4 a) A = 20 b) B= 1 3 4 2 3 5 3 2 x 2 x 4 Bài 2: (3 điểm) Cho biểu thức: P = 2 x 2 x x 4 a) Tìm điều kiện xác định của biểu thức P. Rút gọn biểu thức P. b) Tìm x để P=2 c) Tính giá trị của P tai x thỏa mãn x 2 2 x 1 0 Bài 3: (2 điểm) Cho hàm số y = (m – 1)x + m (1) 1 1 a) Xác định m để đường thẳng (1) song song với đường thẳng y = x - 2 2 b) Xác định m để đường thẳng (1) cắt trục hoàng tại điểm A có hoành độ x=2 c) Xác định m để đường thẳng (1) là tiếp tuyến của đường tròn tâm (O) bán kính bằng 2 . (với O là gốc tọa độ của mặt phẳng Oxy)