Bộ đề thi học kỳ II môn Toán Lớp 9 (Có đáp án)

doc 69 trang hatrang 25/08/2022 7080
Bạn đang xem 20 trang mẫu của tài liệu "Bộ đề thi học kỳ II môn Toán Lớp 9 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docbo_de_e_thi_hoc_ky_ii_mon_toan_lop_9_co_dap_an.doc

Nội dung text: Bộ đề thi học kỳ II môn Toán Lớp 9 (Có đáp án)

  1. ĐỀ THI HỌC KỲ II ĐỀ 1 Môn Toán Lớp 9 Thời gian: 90 phút A. Phần trắc nghiệm (3 điểm) Hãy khoanh vào đáp án đúng trong các câu sau: Câu 1: Hàm số y 3x 2 : A. Nghịch biến trên R.B. Đồng biến trên R. C. Nghịch biến khi x>0, đồng biến khi x 0 Câu 2. Trong các hệ phương trình sau đây hệ phương trình nào vô nghiệm: 3x 2y 5 x y 1 3x 2y 5 5x 3y 1 A. B. C. D. 5x 3y 1 2017x 2017y 2 6x 4y 10 5x 2y 2 3x 2y 8 Câu 3. Hệ phương trình: có nghiệm là: 5x 2y 8 x 2 x 2 x 2 x 2 A. B. C. D. y 1 y 1 y 1 y 3 Câu 4: Tìm 2 số biết tổng của chúng bằng 27 và tích của chúng bằng 180. Hai số đó là: A. -12 và -15B. 15 và 12C. 9 và 20 D. 15 và -12 Câu 5: Tọa độ hai giao điểm của đồ thị hai hàm số y x 2 và y 3x 2 là: A. (1; -1) và (1; 2) B. (1; 1) và (1; 2) C. (1; 2) và (2; 4) D. (1; 1) và (2; 4) Câu 6: Cho hình vẽ bên, biết số đo góc P M· AN 30o Số đo góc P· CQ ở hình vẽ bên là: M · o A. PCQ 120 A B C ? B. P· CQ 60o · o C. PCQ 30 N D. P· CQ 240o Q B.Phần tự luận (7 điểm) 3x 2y 5 Câu 7 (1đ): Giải hệ phương trình 5x y 17 Câu 8 (1đ): Cho phương trình bậc hai ẩn x, ( m là tham số): x 2 4x m 0 (1)
  2. a, Giải phương trình với m = 3. b, Tìm điều kiện của m để phương trình (1) luôn có 2 nghiệm phân biệt. Câu 9 (1,5 đ): Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng 17m và diện tích của mảnh đất là 110m2 . Tính các kích thước của mảnh đất đó. Câu 10 (3 đ): Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tai E. Kẻ EF AD. Gọi M là trung điểm của AE. Chứng minh rằng: a. Tứ giác ABEF nội tiếp một đường tròn. b. Tia BD là tia phân giác của góc CBF. c. Tứ giác BMFC nội tiếp một đường tròn. Câu 11 (0,5 đ): Tính diện tích xung quanh của một chiếc thùng phi hình trụ, biết chiều cao của thùng phi là 1,2 m và đường kính của đường tròn đáy là 0,6m.
  3. III. ĐÁP ÁN I. Trắc nghiệm (3 điểm) Mỗi ý chọn đúng đáp án được 0,5 điểm. Câu 1 2 3 4 5 6 Đáp án C B A B D A I. Tự luận (7 điểm) II. Bài Nội dung Điểm 3x 2y 5 3x 2y 5 0,5 a, 5x y 17 10x 2y 34 Câu Cộng theo từng vế 2 phương trình trên ta được: 7 13x = 39 x = 3 thay vào PT tìm được y = 2 x 3 Hệ có nghiệm duy nhất 0,5 y 2 a, Với m = 3 phương trình (1) trở thành x 2 4x 3 0 Có 1 + (-4) + 3 = không nên PT có 2 nghiệm x1 1 và x 2 3 0,5 Câu 2 8 b, Ta có: ' ( 2) m 4 m Để phương trình (1) có hai nghiệm phân biệt thì : 4-m>0 m 0 Suy ra chiều dài của mảnh đất đó là x+17 (m) 0,5 Vì diện tích của mảnh đất là 110m2 nên ta có PT: Câu x(x+17) = 110 0,5 9 x 2 17x 110 0 Giải phương trình được x1 5 ( Thỏa mãn) và x 2 22 (loại) Vậy chiều dài mảnh đất đó là 22 m, chiều rộng mảnh đất là 5 0,5 Hình vẽ: 0,25 B 2 1 C E M 1 1 A F D Câu · 0 · 0 0,25 10 a.Chỉ ra ABD 90 suy ra ABE 90 EF AD suy ra E·FA 900 0,25 Tứ giác ABEF có tổng hai góc đối bằng 900 nội tiếp được đường 0,25 tròn ¶ ¶ » 0,25 b. Tứ giác ABEF nội tiếp suy ra B1 A1 ( góc nội tiếp cùng chắn EF ) ¶ ¶ Mà A1 B2 ( nội tiếp cùng chắn cung CD) 0,25 Suy ra B¶ B¶ suy ra BD là tia phân giác của góc CBF. 1 2 0,5
  4. c. Chỉ ra tam giác AEF vuông tại F có trung tuyến FM AMF cân ¶ ¶ 0,25 tại M suy ra M1 2A1 · ¶ ¶ · Chỉ ra CBF 2A1 suy ra M1 CBF 0,25 Suy ra B và M cùng nhìn đoạn CF dưới một góc bằng nhau và chúng cùng phía đối với CF nên suy ra tứ giác BMFC nội tiếp một đường tròn 0,5 Câu Diện tích xung quanh của thùng phi đó là: 2 11 Sxq 2 Rh dh 0,6.1,2 0,72 (m ) 0,5 Chú ý: Nếu học sinh làm cách khác mà đúng thì vẫn cho điểm tối đa theo từng phần. ĐỀ 2 ĐỀ THI HỌC KỲ II Môn Toán Lớp 9 Thời gian: 90 phút A. PHẦN TRẮC NGHIỆM (2,0 điểm). Câu 1. Phương trình x2 6x 1 0 có tổng hai nghiệm bằng A. -6 B. 6 C. 1 D. -1 3x y 2 Câu 2. Hệ phương trình có nghiệm bằng x y 6 A. (x;y)=(-1;5) B. (x;y)=(1;5) C. (x;y)=(-1;-5) D. (x;y)=(1;-5) Câu 3. Cho tứ giác ABCD nội tiếp đường tròn tâm O, biết . Khi đó bằng A. B. C. D. Câu 4. Phương trình x4 3x2 4 0 có tổng các nghiệm bằng. A. 0 B. 3 C. 4 D. -3 B. PHẦN TỰ LUẬN (8,0 điểm). mx y 3 Câu 5. Cho hệ phương trình ( m là tham số) (*) 4x my 7 a, Giải hệ phương trình với m=1 b, Tìm m để hệ phương trình (*) có nghiệm duy nhất. Câu 6. Cho phương trình bậc hai x2 2x 3m 1 0 (m là tham số) ( ) a, Giải phương trình với m=0 b, Tìm m để phương trình ( ) có hai nghiệm phân biệt.
  5. Câu 7. Cho tam giác cân ABC có đáy BC và . Trên nửa mặt phẳng bờ AB không chứa điểm C lấy điểm D sao cho DA=DB và . Gọi E là giao điểm của AB và CD. a, Chứng minh ACBD là tứ giác nội tiếp. b, Tính . Câu 8. Cho a,b,c là các số thực, không âm đôi một khác nhau. Chứng minh rằng: 1 1 1 ab bc ca . 4 2 2 2 a b b c c a Hết (Cán bộ coi thi không giải thích gì thêm) Họ và tên học sinh. SBD: ĐÁP ÁN A. PHẦN TRẮC NGHIỆM ( Mỗi cấu đúng 0,5 điểm) Câu 1 2 3 4 Đáp án B C A A B. PHẦN TỰ LUẬN C. Câu Nội dung Điểm 5 a, Thay m=1 vào HPT ta được 1,5 2,5đ Vậy nghiệm của HPT là (x;y)=(2;-1) b, HPT có nghiệm duy nhất khi 1 6 a, Thay m=0 vào PT ta được =0 1,5 2,5đ b, ĐK để phương trình có hai nghiệm phân biệt là 1 7 C 2,0đ E B A D a, Từ tam giác ABC cân A, tính được 1
  6. Từ tam giác cân ADB, tính được Suy ra . Do đó tứ giác ACBD nội tiếp b, Là góc có đỉnh bên trong đường tròn 1 8 Giả sử c=min khi đó ; 1đ 1đ Ta cần chứng minh . Bằng cách biến đổi tương đương ta được ĐỀ 3 ĐỀ THI HỌC KỲ II Môn Toán Lớp 9 Thời gian: 90 phút I - LÝ THUYẾT: (2 điểm) Học sinh chọn một trong hai đề sau: Đề 1: Viết công thức nghiệm của phương trình bậc hai. Đề 2: Câu 1. Nêu tính chất góc nội tiếp. Câu 2. Nêu định nghĩa số đo cung. II - BÀI TẬP : (8 điểm) Bài 1: (2 điểm) Giải phương trình và hệ phương trình sau : 4x 5y 3 a) x2 + 5x – 6 = 0 b) 2x4 + 3x2 – 2 = 0 c) x 3y 5 Bài 2: (2 điểm) Một xe khách và một xe du lịch khởi hành đồng thời từ Hà Tiên đi Rạch Sỏi. Xe du lịch có vận tốc lớn hơn xe khách là 20 km/h do đó đến Rạch Sỏi trước xe khách 50 phút. Tính vận tốc mỗi xe. Biết khoảng cách từ Hà Tiên đến Rạch Sỏi là 100 km. Bài 3: (3 điểm) Cho nửa đường tròn (O ; R) đường kính AB cố định. Qua A và B vẽ các tiếp tuyến với nửa đường tròn tâm O. Từ một điểm M tùy ý trên nửa đường tròn (M A và B) vẽ tiếp tuyến thứ 3 với nửa đường tròn cắt các tiếp tuyến tại A và B theo thứ tự là H và K. a) Chứng minh tứ giác AHMO là tứ giác nội tiếp. b) Chứng minh AH + BK = HK. c) Chứng minh tam giác HAO đồng dạng với tam giác AMB và HO . MB = 2R2 Bài 4: (1 điểm) Khi quay tam giác ABC vuông ở A một vòng quanh cạnh góc vuông AC cố định, ta được một hình nón. Biết rằng BC = 4 cm, góc ACB bằng 30 0. Tính diện tích xung quanh và thể tích hình nón. + ĐÁP ÁN VÀ THANG ĐIỂM: Câu Nội dung Điểm LÝ THUYẾT
  7. LT Nêu đúng công thức nghiệm. 2 Đề 1 (2 điểm) LT Câu 1. Nêu đúng tính chất góc nội tiếp. 1 Đề 2 Câu 2. Nêu đúng định nghĩa số đo cung. 1 (2 điểm) BÀI TẬP a) x2 + 5x – 6 = 0 có a + b + c = 1 + 5+ (-6) = 0 0,25 Nên phương trình có 2 nghiệm là: x1 = 1 ; x2 = -6 0,25 b) 2x4 + 3x2 – 2 = 0 (b) Đặt x2 = t (t 0) PT (b) trở thành 2t2 + 3t – 2 = 0 (b’) = 32 – 4 . 2 . (-2) = 25 > 0 25 5 0,25 Phương trình (b’) có hai nghiệm t1 = ½ (nhận) ; t2 = -2 (loại) 2 Với t1 = ½ x 0,25 1,2 2 Bài 1 2 0,25 (2 điểm) Vậy PT (b) có hai nghiệm x 1,2 2 4x 5y 3 c) x 3y 5 4(5 3y) 5y 3 0,25 x 5 3y 17y 17 0,25 x 5 3y y 1 0,25 x 2 Gọi vận tốc của xe khách là x (km/h); ĐK: x > 0 0,25 Vận tốc xe du lịch là: x + 20 (km/h) 0,25 Thời gian xe khách đi hết quãng đường là: 100 (h) x Thời gian xe du lịch đi hết quãng đường là: 100 (h) x 20 Đổi 50 phút = 5 h 6 Bài 2 Theo bài ta có phương trình : 100 - 5 = 100 0,25 (2 điểm) x 6 x 20 600(x + 20) – 5x(x + 20) = 600x 0,25  600x + 12 000 – 5x2 – 100x – 600x = 0  5x2 + 100x – 12 000 = 0 2  x + 20x – 2 400 = 0 0,25 2 ' 10 + 2 400 = 2 500 0,25 10 50 ' = 50 x1 = = 40 1
  8. 10 50 0,25 x2 = = -60 ( loại) 1 Vậy vận tốc xe khách là 40 km/h và vận tốc xe du lịch là 60 0,25 km/h Vẽ hình ghi GT, KL 0,5 K M H A O R B a) Chứng minh tứ giác AHMO là tứ giác nội tiếp Bài 3 Xét tứ giác AHMO có: (3 điểm) O· AH = O· MH = 900 (tính chất tiếp tuyến) 0,5 O· AH + O· MH = 1800 0,5 Nên tứ giác AHMO nội tiếp đường tròn. b) Chứng minh AH + BK = HK Theo tính chất hai tiếp tuyến cắt nhau 0,25 Ta có: AH = MH và MK = KB 0,25 Mà HM + MK = HK (vì M nằm giữa H và K) 0,25 AH + BK = HK 0,25 c) HAO ∽ AMB (g - g) 0,5 HO . MB = AB . AO = 2R2 AB = 2 cm 0,25 AC = 2 3 cm 0,25 Bài 4 S = 8 cm2 0,25 (1 điểm) xq 8 3 V = cm 0,25 3
  9. ĐỀ 4 ĐỀ THI HỌC KỲ II Môn Toán Lớp 9 Thời gian: 90 phút A. PHẦN TRẮC NGHIỆM (2,0 điểm). Câu 1. Phương trình x2 6x 1 0 có tổng hai nghiệm bằng B. -6 B. 6 C. 1 D. -1 3x y 2 Câu 2. Hệ phương trình có nghiệm bằng x y 6 B. (x;y)=(-1;5) B. (x;y)=(1;5) C. (x;y)=(-1;-5) D. (x;y)=(1;-5) Câu 3. Cho tứ giác ABCD nội tiếp đường tròn tâm O, biết . Khi đó bằng B. B. C. D. Câu 4. Phương trình x4 3x2 4 0 có tổng các nghiệm bằng. B. 0 B. 3 C. 4 D. -3 B. PHẦN TỰ LUẬN (8,0 điểm). mx y 3 Câu 5. Cho hệ phương trình ( m là tham số) (*) 4x my 7 a, Giải hệ phương trình với m=1 b, Tìm m để hệ phương trình (*) có nghiệm duy nhất. Câu 6. Cho phương trình bậc hai x2 2x 3m 1 0 (m là tham số) ( ) a, Giải phương trình với m=0 b, Tìm m để phương trình ( ) có hai nghiệm phân biệt. Câu 7. Cho tam giác cân ABC có đáy BC và . Trên nửa mặt phẳng bờ AB không chứa điểm C lấy điểm D sao cho DA=DB và . Gọi E là giao điểm của AB và CD. a, Chứng minh ACBD là tứ giác nội tiếp. b, Tính . Câu 8. Cho a,b,c là các số thực, không âm đôi một khác nhau. Chứng minh rằng: 1 1 1 ab bc ca . 4 2 2 2 a b b c c a Hết (Cán bộ coi thi không giải thích gì thêm) Họ và tên học sinh. SBD:
  10. ĐÁP ÁN D. PHẦN TRẮC NGHIỆM ( Mỗi cấu đúng 0,5 điểm) Câu 1 2 3 4 Đáp án B C A A E. PHẦN TỰ LUẬN F. Câu Nội dung Điểm 5 a, Thay m=1 vào HPT ta được 1,5 2,5đ Vậy nghiệm của HPT là (x;y)=(2;-1) b, HPT có nghiệm duy nhất khi 1 6 a, Thay m=0 vào PT ta được =0 1,5 2,5đ b, ĐK để phương trình có hai nghiệm phân biệt là 1 7 C 2,0đ E B A D a, Từ tam giác ABC cân A, tính được 1 Từ tam giác cân ADB, tính được Suy ra . Do đó tứ giác ACBD nội tiếp b, Là góc có đỉnh bên trong đường tròn 1 8 Giả sử c=min khi đó ; 1đ 1đ Ta cần chứng minh . Bằng cách biến đổi tương đương ta được
  11. ĐỀ 5 ĐỀ THI HỌC KỲ II Môn Toán Lớp 9 Thời gian: 90 phút I. TRẮC NGHIỆM : (3 điểm) Chọn câu trả lời em cho là đúng nhất: Câu 1: Trong các cặp số sau đây, cặp số nào là nghiệm của phương trình 3x + 5y = – 3? A. (–2; 1) B. (0; –1) C. (–1; 0) D. (1; 0) Câu 2. Cho đường tròn (O; 2cm), độ dài cung 600 của đường tròn này là: A. cm. B. 3 cm C. cm D. 2 cm. 3 2 2 3 2x 3y 3 Câu 3: Nghiệm của hệ phương trình là: x 3y 6 A.(2;1) B.( 3;1) C(1;3) D.(3; -1) Câu 4: Đường kính vuông góc với một dây cung thì: A. Đi qua trung điểm của dây cung ấy. B. không đi qua trung điểm của dây cung ấy Câu 5: Phương trình x2 - 7x – 8 = 0. có tổng hai nghiệm là: A.8 B.-7 C.7 D.3,5 Câu 6: Cho hình vẽ: P 350; I·MK 250 Số đo của cung M¼aN bằng: m 25 a A. 600 B. 700 i o 35 p 0 0 k n C. 120 D.130 Câu 7: Phương trình của parabol có đỉnh tại gốc tọa độ và đi qua điểm ( - 1 ; 3 ) là: A. y = x2 B. y = - x2 C. y = -3x2 D. y = 3x2 Câu 8: Tứ giác ABCD nội tiếp đường tròn có µA = 500; Bµ = 700 . Khi đó Cµ - Dµ bằng: A. 300 B . 200 C . 1200 D . 1400 II. Điền đúng (Đ) hoặc sai (S) vào ô vuông ở cuối mỗi câu sau: (1 điểm) 2 5 1. Phương trình 7x – 12x + 5 = 0 có hai nghiệm là x1 = 1; x2 = . 7 2. x2 + 2x = mx + m là một phương trình bậc hai một ẩn số với mọi m R. 3. Trong một đường tròn hai cung bị chắn giữa hai dây song song thì bằng nhau. 4. Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng số đo của góc nội tiếp.
  12. II. TỰ LUẬN (7 điểm) Bài 1. (2 điểm) 2x 3y 1 a. Giải hệ phương trình sau: x 4 y 7 b. Giải phương trình: x4 – 5x2 + 4 = 0 Bài 2. (1 điểm) Tìm các giá trị của m để phương trình 2x2 – (4m + 3)x + 2m2 –1 = 0 có nghiệm ? Bài 3.(1 điểm) Một xe khách và một xe du lịch khởi hành cùng một lúc từ A đến B. Xe du lịch có vận tốc lớn hơn vận tốc của xe khách là 20 km/h, do đó nó đến B trước xe khách 25 phút. Tính vận tốc của mỗi xe, biết khoảng cách AB là 100 km. Bài 4. (3 điểm) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi E, D lần lượt là giao điểm của các tia phân giác trong và ngoài của hai góc B và C. Đường thẳng ED cắt BC tại I, cắt cung nhỏ BC ở M. Chứng minh: a. Ba điểm A, E, D thẳng hàng. b.Tứ giác BECD nội tiếp được trong đường tròn. c. BI. IC = ID. IE ĐÁP ÁN VÀ BIỂU ĐIỂM MÔN TOÁN 9 - HỌC KÌ II I/ TRẮC NGHIỆM ( 3 điểm):- Mỗi câu đúng được 0,25 điểm. Câu 1 2 3 4 5 6 7 8 Đáp án C D B A C C D A II. Điền Đ hoặc S vào chỗ trống: 1- Sai 2 - Đúng 3 - Đúng 4 - Sai II. TỰ LUẬN: (7 điểm). Câu Lời giải Điểm 2x 3y 1 Giải hệ phương trình x 4y 7 0.5 Từ PT (2) x = 4y - 7 (*) thế vào PT (1) Ta có 2(4y - 7) - 3y = 1 8y - 14 - 3y = 1 5y = 15 y = 3. Bài 1 ThÕ vµo (*) x = 4.3 - 7 = 5. VËy HPT cã 1 nghiÖm: (x;y) = (5; 3) 0.5 2x2 – (4m + 3)x + 2m2 –1 = 0 Tìm được = 24m + 17 (0,25điểm) 0,75 17 Tìm được m (0,75 điểm) 24 0,25
  13. Đặt t = x2 ( t>0). Phương trình trở thành t 2 -5t + 4 = 0 Bài 2 0.5 Giải ra t = 1, t = 4 (nhận) Giải ra x = 1, x= -1, x= 2, x= -2. 0,5 Gọi vận tốc của xe khách là x (km/h), (ĐK: x > 0) khi đó vận tốc của xe du lịch là x + 20 (km/h) 0.25 100 Thời gian đi từ A đến B của xe khách là : (giờ) x 0.25 100 Thời gian đi từ A đến B của xe du lịch là : (giờ) x 20 5 Bài Vì xe du lịch đến B trước xe khách 25 phút = giờ 3 12 100 100 5 nên ta có phương trình: - = x x 20 12 => x1 = 60 0.25 x2 = -80 < 0 ( lo¹i) VËy vËn tèc cña xe kh¸ch lµ 60 km/h; 0.25 VËn tèc cña xe du lÞch lµ 60 + 20 = 80 (km/h) a Hình vẽ 0.5 d a)Vì E là giao điểm hai phân giác góc B và C của tam giác ABC nên c AE cũng là phân giác của góc A. b i 0.5 Khi đó AE và AD đều là phân giác trong của góc BAC nên A, E, D thẳng hàng Bài 4 e b) Ta có: E· BD + E· CD = 900 + 900 = 1800 0.5 Tứ giác BECD nội tiếp đường tròn 0.5 c) Xét hai tam giác BIE và tam giác DIC: E· BC = E· DC (haigóc nội tiếp cùng chắn cung EC) B· IE = D· IC ( đối đỉnh) 0.5 BI IE BIE DIC ( g-g) ID IC
  14. BI. IC = IE. ID 0.5 ĐỀ THI HỌC KỲ II ĐỀ 6 Môn Toán Lớp 9 Thời gian: 90 phút I. Trắc nghiệm (2 điểm) Hãy chọn đáp án đúng trong các câu sau: Câu 1: Hàm số y 1 2 x2 là: A. Nghịch biến trên R.B. Đồng biến trên R. C. Nghịch biến khi x>0, đồng biến khi x 0 Câu 2. Trong các phương trình sau đây phương trình nào vô nghiệm: A. x2-2x+1=0 B. -30x2+4x+2011 C. x2+3x-2010 D. 9x2-10x+10 Câu 3. Cho A·OB 600 là góc của đường tròn (O) chắn cung AB. Số đo cung AB bằng: A. 1200 B. 600 C. 300 D. Một đáp án khác Câu 4: Một hình trụ có chu vi đáy là 15cm, diện tích xung quanh bằng 360cm2. Khi đó chiều cao của hình trụ là: A. 24cmB. 12cmC. 6cm D. 3cm II. Tự luận (8 điểm) mx 2y 3 Bài 1 (2 đ): Cho hệ phương trình: víi m lµ tham sè 2x my 11 a. Giải hệ khi m=2 b. Chứng tỏ rằng hệ luôn có nghiệm duy nhất với mọi giá trị của m. Bài 2 (3 đ): Một mảnh đất hình chữ nhật có diện tích 720m2, nếu tăng chiều dài 6m và giảm chiều rộng 4m thì diện tích của mảnh vườn không đổi. Tính các kích thước của mảnh vườn đó. Bài 3 (3 đ): Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tai E. Kẻ EF AD. Gọi M là trung điểm của AE. Chứng minh rằng: a. Tứ giác ABEF nội tiếp một đường tròn.
  15. b. Tia BD là tia phân giác của góc CBF. c. Tứ giác BMFC nội tiếp một đường tròn Hướng dẫn chấm Đề kiểm tra học kì ii I. Trắc nghiệm (2 điểm) Mỗi ý chọn đúng đáp án được 0,5 điểm. Câu 1 2 3 4 Đáp án C D B A II. Tự luận (8 điểm) Bài Nội dung Điểm 7 2x 2y 3 x 1,0 a. Với m=2 hệ trở thành: 2 2x 2y 11 y 2 Bài 1 mx 2y 3 b) Xét hệ: víi m lµ tham sè (2 đ) 2x my 11 2 Từ hai phương trình của hệ suy ra: m 4 x 22 3m (*) 0,5 Vì phương trình (*) luôn có nghiệm với mọi m nên hệ đã cho luôn có nghiệm với mọi m. 0,5 Gọi chiều dài của mảnh đất đó là x(m), x>0 720 0,5 Suy ra chiều rộng của mảnh đất đó là (m) x Lý luận để lập được phương trình: Bài 2 720 (3 đ) x 6 4 720 1 x Giải phương trình được x=30 1 720 Vậy chiều dài mảnh đất đó là 30m, chiều rộng mảnh đất là 24m 30 0,5 Hình vẽ: 0,25 B 2 1 C E M 1 Bài 3 1 (3 đ) A F D a.Chỉ ra A·BD 900 suy ra A·BE 900 0,25 EF AD suy ra E·FA 900 0,25 Tứ giác ABEF có tổng hai góc đối bằng 900 nội tiếp được đường 0,25 tròn
  16. ¶ ¶ » 0,25 b. Tứ giác ABEF nội tiếp suy ra B1 A1 ( góc nội tiếp cùng chắn EF ) ¶ ¶ Mà A1 B2 ( nội tiếp cùng chắn cung CD) 0,25 Suy ra B¶ B¶ suy ra BD là tia phân giác của góc CBF. 1 2 0,5 c. Chỉ ra tam giác AEF vuông tại F có trung tuyến FM AMF cân ¶ ¶ 0,25 tại M suy ra M1 2A1 · ¶ ¶ · Chỉ ra CBF 2A1 suy ra M1 CBF 0,25 Suy ra B và M cùng nhìn đoạn CF dưới một góc bằng nhau và chúng cùng phía đối với CF nên suy ra tứ giác BMFC nội tiếp một đường tròn 0,5 Chú ý: Nếu học sinh làm cách khác mà đúng thì vẫn cho điểm tối đa theo từng phần. ĐỀ 7 ĐỀ THI HỌC KỲ II Môn Toán Lớp 9 Thời gian: 90 phút Bài 1: ( 2 điểm ) Giải các phương trình và hệ phương trình sau: x y 5 4 2 a) b) x 5x 4 0 3x y 7 Bài 2 : ( 2 điểm ) Trên cùng một MFTĐ Oxy cho hai đồ thị Parabol P : y x2 và d : y 4x 3 a) Vẽ P b) Tìm tọa độ giao điểm của P và d . Bài 3 : ( 2 điểm ) Cho phương trình : x2 m 2 x 2m 0 (1) a) Chứng tỏ phương trình (1) luôn có 2 nghiệm x1; x2 với mọi m . 2 2 b) Tìm m để phương trình có 2 nghiệm x1; x2 sao cho x1 x2 đạt giá trị nhỏ nhất. Bài 4: ( 4 điểm ) Cho ABC nhọn nội tiếp (O;R) . Các đường cao AD; BE; CF cắt nhau tại H. a) Chứng minh : Tứ giác AEHF nội tiếp. b) Chứng minh : Tứ giác BFEC nội tiếp. c) Chứng minh : OA  EF d) Biết số đo cung AB bằng 90 0 và số đo cung AC bằng 120 0 . Tính theo R diện tích phần hình tròn giới hạn bởi dây AB; cung BC và dây AC Hết ĐÁP ÁN VÀ BIỂU ĐIỂM Bài NỘI DUNG ĐIỂM x y 5 1,0đ a) Giải hpt 3x y 7
  17. 4x 12 0,5 x y 5 x 3 x 3 0,5 3 y 5 y 5 3 2 b) Giải pt x4 5x2 4 0 (*) 1,0đ Đặt x2 t t 0 . PT * t 2 5t 4 0 0,25 t 1( nhận ) ; t 4 ( nhận ) 0,25 1 1 2 t 1 x2 1 x 1 Với 1 2 0,25 t2 4 x 4 x 2 Vậy phương trình đã cho có 4 nghiệm : x1 1; x2 1; x3 2; x4 2 0,25 a) Vẽ P : y x2 1,0đ + Lập bảng giá trị đúng : 0,5 x -2 -1 0 1 2 y = x2 4 1 0 1 4 0,5 2 + Vẽ đúng đồ thị : b)Tìm tọa độ giao điểm của P và d . 1,0đ + Pt hoành độ giao điểm của P và d : x2 4x 3 0 0,25 x1 1 y1 1: A 1;1 0,25 + 0,25 x2 3 y2 9 : B 3;9 Vậy tọa độ giao điểm của P và d là A 1;1 ; B 3;9 0,25 a) Chứng tỏ phương trình (1) luôn có nghiệm với mọi m . 1,0đ + m 2 2 4.1. 2m m2 4m 4 m 2 2 0,m 0,75 + Vậy phương trình (1) luôn có 2 nghiệm x1; x2 với mọi m . 0,25 2 2 b) Tìm m để phương trình có 2 nghiệm x1; x2 sao cho x1 x2 1,0đ đạt giá trị nhỏ nhất. 3 x x m 2 + Theo vi-et : 1 2 0,25 x1.x2 2m 2 2 2 0,25 + x1 x2 x1 x2 2x1x2 m 2 2 2. 2m m2 8m 4 m 4 2 12 12,m 0,25 2 2 + Vậy GTNN của x1 x2 là – 12 khi m 4 0 m 4 0,25 a) Chứng minh : Tứ giác AEHF nội tiếp. 1,0đ
  18. 4 + Tứ giác AEHF có: A·EH = 900;A·FH = 900 (gt) 0,5 + A·EH + A·FH = 900 + 900 = 1800 0,25 + Vậy tứ giác AEHF nội tiếp đường tròn đường kính AH 0,25 b) Chứng minh : Tứ giác BFEC nội tiếp. 1,0đ + Tứ giác BFEC có: B·FC = 900;B·EC = 900 (gt) 0,5 + F và E là hai đỉnh kề nhau cùng nhìn BC dưới 1 góc 900 0,25 + Vậy tứ giác BFEC nội tiếp đường tròn đường kính BC 0,25 c) Chứng minh : OA  EF 1,0đ · + Kẻ tiếp tuyến x’Ax của (O) x'AB = A·CB ( Cùng chắn cung 0,25 AB ) + A·FE = A·CB ( BFEC nội tiếp ) 0,25 · + x'AB = A·FE Þ x'x //FE 0,25 + Vậy : OA  EF 0,25 d) Tính theo R diện tích phần hình tròn giới hạn bởi dây AB; 1,0đ cung BC và dây AC + Gọi SCt là diện tích phần hình tròn giới hạn bởi dây AB; cung 0,25 BC và dây AC . S = S - S - S Ct (O) VFAB VFAC pR2 R2 + S = S - S = - (đvdt) 0,25 VFAB quatOAB DOAB 4 2 pR2 R2 3 0,25 + S = S - S = - (đvdt) VFAC quatOAC DOAC 3 4 + 0,25 æ 2 2 ö æ 2 2 ö 2 2 2 2 pR R çpR R 3 ÷ 5pR - 6R - 3 3R S = S - S - S = pR - ç - ÷- ç - ÷= Ct (O) VFAB VFAC ç ÷ ç ÷ èç 4 2 ø÷ èç 3 4 ø÷ 12 (đvdt) * Ghi chú : - Hình vẽ sai không chấm điểm phần bài hình - Mọi cách giải khác đúng vẫn đạt điểm tối đa của câu đó. ĐỀ 8 ĐỀ THI HỌC KỲ II Môn Toán Lớp 9 Thời gian: 90 phút 1 Bài 1: (1,0đ) Cho hàm số y f(x) x2 .Tính f(2); f( 4) 2 3x y 10 Bài 2: (1,0đ): Giải hệ phương trình: x y 4
  19. Bài 3: (1,5đ) Giải phương trình: x4 3x2 4 0 Bài 4 : (1,0đ) Với giá trị nào của m thì phương trình: x2 -2(m +1)x + m2 = 0 có hai nghiệm phân biệt. Bài 5: (1.5đ) Tích của hai số tự nhiên liên tiếp lớn hơn tổng của chúng là 19. Tìm hai số đó Bài 6: (1,0đ) Một hình trụ có bán kính đường tròn đáy là 6cm, chiều cao 9cm. Hãy tính: a) Diện tích xung quanh của hình trụ. b) Thể tích của hình trụ. (Kết quả làm tròn đến hai chữ số thập phân; 3,14) Bài 7: (3,0đ) Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD tại F. Chứng minh rằng: a) Chứng minh: Tứ giác DCEF nội tiếp được b) Chứng minh: Tia CA là tia phân giác của BCˆF . ĐÁP ÁN VÀ BIỂU ĐIỂM: Biểu Bài Đáp án điểm f(2)=2 0,5 1 f(-4)=8 0,5 (1,0đ) Trừ hai PT ta được 2x=6 => x = 3, y = 1 0,75 2 Vậy: Hệ phương trình có nghiệm duy nhất là ( 3; 1) (1,0đ) 0,25 x4 3x2 4 0 Đặt x2 = t (ĐK t≥0) 0,5 Ta có PT : t2+3t-4 = 0 3 Có dạng: a + b + c = 1 +3+(-4) = 0 (1,5đ) t1 = 1 ; t2 = -4 (loại) 0,25 Với t = 1 x1 = 1, x2 = -1 0,5 Vậy: Phương trình đã cho có 2 nghiệm: x1 = 1; x2 = –1 0,25 4 Cho phương trình: x2 – 2(m+1)x + m2 = 0 (1) (1,0đ) phương trình (1) luôn có 2 nghiệm phân biệt khi
  20. ∆ = (m+1)2 – m2 = 2m + 1 > 0 => m > 0,75 Vậy: Phương trình (1) có hai nghiệm phân biệt khi m > 0,25 Gọi số tự nhiên thứ nhất là x (x N) =>Số thứ 2 là x+1 0.25 Tích của hai số tự nhiên liên tiếp là x(x+1) 5 Tổng của hai số đó là: x + x + 1 = 2x + 1 0.25 (1,5đ) Theo bài ra ta có PT: x2 – x – 20 = 0 0.25 Có nghiệm thỏa mãn x = 5 0.5 Vậy: Hai số tự nhiên liên tiếp cần tìm là 5 và 6 0.25 a) Diện tích xung quanh của hình trụ là: 2 0,5 6 Sxq = 2 r.h = 2.3,14.6.9 339,12 (cm ) (1,0đ) b) Thể tích của hình trụ là: 0,5 V = r2h = 3,14 . 62 . 9 1017,36 (cm3) C Hình vẽ: 2 1 B E 0,5đ 1 A F D 7 a)Ta có: ACD = 900 ( góc nội tiếp chắn nửa đường tròn đường kính AD (3,0đ) ) 0,25 Xét tứ giác DCEF có: 0,25 ECD = 900 ( cm trên ) và EFD = 900 ( vì EF  AD (gt) ) => ECD + EFD = 1800 => Tứ giác DCEF là tứ giác nội tiếp ( 0,5 đpcm ) b) Vì tứ giác DCEF là tứ giác nội tiếp ( cm phần a ) 0,5 ˆ ˆ => C1 = D1 ( góc nội tiếp cùng chắn cung EF ) (1) ˆ ˆ Mà: C2 = D1 (góc nội tiếp cùng chắn cung AB ) (2) 0,5 ˆ ˆ ˆ Từ (1) và (2) => C1 = C2 hay CA là tia phân giác của BCF ( đpcm ) 0,5 ( Lưu ý : Các cách làm khác đúng vẫn cho điểm tối đa)
  21. ĐỀ 9 ĐỀ THI HỌC KỲ II Môn Toán Lớp 9 Thời gian: 90 phút Câu 1 : ( 2 điểm) Giải phương trình, hệ phương trình sau a) 4x4 + 9x2 - 9 = 0 2x y 5 b) x y 3 Câu 2 : ( 2 điểm) Cho phương trình (ẩn x): x2 - (2m - 1)x + m2 - 2 = 0 (1) a) Tìm m để phương trình (1) vô nghiệm. b) Tìm m để phương trình (1) có nghiệm x1, x2 thỏa mãn x1.x2 2(x1 x2 ) Câu 3 : (2 điểm) Cho hàm số y=x2 a) Vẽ đồ thị (P) của hàm số trên b) Cho hàm số y = mx + 4 có đồ thị là (d). Tìm m sao cho (d) và (P) cắt nhau tại 1 1 hai điểm có tung độ y1, y2 thỏa mãn 5 y1 y2 Câu 4 : ( 3 điểm) Cho nửa đường tròn (O) đường kính AB. Điểm M nằm trên nửa đường tròn (M ≠ A; B). Tiếp tuyến tại M cắt tiếp tuyến tại A và B của đường tròn (O) lần lượt tại C và D. a) Chứng minh rằng: tứ giác ACMO nội tiếp. b) Chứng minh rằng: C· AM O· DM c) Gọi P là giao điểm CD và AB. Chứng minh: PA.PO = PC.PM d) Gọi E là giao điểm của AM và BD; F là giao điểm của AC và BM. Chứng minh: E; F; P thẳng hàng. Câu 5 : ( 1 điểm) Giải phương trình 4x2 5x 1 2 x2 x 1 3 9x HẾT ĐÁP ÁN, BIỂU ĐIỂM:
  22. Câu Đáp án Điểm a) 4x4 + 9x2 - 9 = 0 (1) Đặt t= x2 ( t 0 ) pt(1) 4t2 9t 9 0 0.25 a 4;b 9;c 9 b2 4ac 92 4.4.( 9) 225 0 0.25 t 3 (loai) 3 Câu 1 t (TMDK) (2 điểm) 4 3 3 3 Với t x2 x 4 4 2 0.25 3 3 Vậy phương trình (1) có 2 nghiệm x ; x 2 2 0.25 2x y 5 b) giải hệ tìm được ( x= 2; y=1) 1 x y 3 a) Phương trình x2 – (2m – 1)x + m2 – 2 = 0 vô nghiệm khi 0 0,5 4m2 – 4m + 1– 4m2 + 8 9/4 0,5 b) Phương trình x2 – ( 2m – 1)x + m2 – 2 = 0 có nghiệm khi 0 4m2 – 4m + 1– 4m2 + 8 0 m 9/4 0,25 2 Câu 2 Khi đó ta có x1 x2 2m 1, x1x2 m 2 0,25 (2 điểm) x1.x2 2(x1 x2 ) m 0 nhân m2 2 2(2m 1) m2 4m 0 0,25 m 4 loai Kết luận 0,25 a) Lập bảng và tính đúng 0,5 Vẽ đúng đồ thị 0,5 b) Ta có x2 mx 4 0 và a.c = - 4 <0 nên phương trình có 2 nghiệm phân biệt x1, x2. Theo hệ thức Viets ta có x1 x2 m; x1.x2 4 0,25 Câu 3 1 1 1 1 Khi đó 5 2 2 5 (2 điểm) y1 y2 x1 x2 2 2 2 2 0,25 x1 x2 5x1 .x2 (x x )2 2x .x 5(x .x )2 1 2 1 2 1 2 0,25 m2 72 m 6 2 0,25
  23. E F D M C P A O B a. Tứ giác ACMO nội tiếp. 1 Chứng minh được tứ giác ACMO nội tiếp Câu 4 b. Chứng minh rằng: C· AM O· DM (3 điểm) - Chứng minh được C· AM A· BM 0.25 - Chứng minh tứ giác BDMO nội tiếp 0.25 · · - Chứng minh được ABM ODM 0.25 Suy ra C· AM O· DM 0.25 c. Chứng minh: PA.PO = PC.PM Chứng minh được PAM đồng dạng với PCO (g.g) 0.25 PA PM Suy ra PC PO 0.25 Suy ra PA.PO=PC.PM d. Chứng minh E; F; P thẳng hàng. Chứng minh được CA = CM = CF; DB = DM = DE 0.25 Gọi G là giao điểm của PF và BD, cần chứng minh G trùng E FC PC PC AC AC CF Dựa vào AC//BD chứng minh được ; ; DG PD PD BD BD DE 0.25 Suy ra DE = DG hay G trùng E. Suy ra E; F; P thẳng hàng 4x2 5x 1 2 x2 x 1 3 9x ( 4x2 5x 1 0 ; x2 x 1 0 ) 0.25 4x2 5x 1 2 x2 x 1 4x2 5x 1 2 x2 x 1 3 9x 4x2 5x 1 2 x2 x 1 0.25 Câu 5 2 2 2 2 4x 5x 1 2 x x 1 1 (lo¹i) (1 điểm) 9x 3 3 9x 4x 5x 1 2 x x 1 0.25 9x 3 0 9x - 3 = 0 x = 1/3 (Thỏa mãn điều kiện) 0.25 Kết luận:
  24. ĐỀ 10 ĐỀ THI HỌC KỲ II Môn Toán Lớp 9 Thời gian: 90 phút Bài 1: ( 3 điểm) ( Không dùng máy tính cầm tay ) 1) Giải hệ phương trình: 3x y 3 2x y 7 2) Giải phương trình: x4 13x2 36 0 3) Cho phương trình bậc hai: x2 6x m 0 (m là tham số ) Tìm m để phương trình có hai nghiệm thỏa mãn 3 3 x1 +x2 72 Bài 2: (1,5 điểm) Một tam giác vuông có chu vi bằng 30m, cạnh huyền bằng 13m. Tính mỗi cạnh góc vuông. Bài 3: ( 2 điểm) Trong mặt phẳng tọa độ cho prabol( P): y 2x2 a) Vẽ đồ thị ( P ) b) Bằng phương pháp đại số tìm tọa độ giao điểm A và B của (P) và đường thẳng (d): y 3x 1 Bài 4: (3,5điểm) Từ điểm A ở ngoài đường tròn (0;2cm). Kẻ hai tiếp tuyến AB, AC và cát tuyến AMN với đường tròn đó (M nằm giữa A và N), cho góc BAC có số đo bằng 600. a) Chứng minh tứ giác ABOC nội tiếp đường tròn. Xác định tâm và bán kính của đường tròn ngoại tiếp tứ giác ABOC. b) Chứng minh: AB2 AM.AN c) Tính diện tích phần hình giới hạn bởi các đoạn AB, AC và cung nhỏ BC nói trên. ĐÁP ÁN VÀ THANG ĐIỂM BÀI ĐÁP ÁN ĐIỂM
  25. 1.1 Giải hệ phương trình: 3x y 3 1đ 2x y 7 3x y 3 5x 10 0,25đ 2x y 7 y 2x 7 x 2 0,25đ y 2x 7 x 2 0,25đ y 3 Vậy hệ phương trình có một nghiệm duy nhất 0,25đ (x; y) (2; 3) 1.2 Giải phương trình: x4 13x2 36 0 1đ Đặt t = x2 (t 0) phương trình trở thành t 2 13t 36 0 0,25đ Giải 25 và t1 9 (nhận) t2 4 (nhận) 0,25đ 2 2 t1 x 9 x 3; t2 x 4 x 2 0,25đ Vậy phương trình có 4 nghiệm: 0,25đ x1 3; x2 3; x3 2; x4 2 1.3 Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn 1đ 3 3 x1 x2 72 Phương trình có nghiệm x1, x2 khi ’ 9 m 0 m 9 0,25đ x1 x2 6 0,25đ Viết đúng hệ thức Vi-et x1.x2 m 3 3 3 x1 x2 72 (x1 x2 ) 3x1x2 (x1 x2 ) 72 0,25đ 62 3.m.6 72 m 8 vậy m = 8 0,25đ 2 Tìm hai cạnh góc vuông 1,5đ Gọi x(m) là cạnh góc vuông thứ nhất. Điều kiện 0x 13 0,25đ Cạnh vuông thứ hai: 17 x (m) 0,25đ Sử dụng định lý Pitago viết phương trình 0,25đ x2 (17 x)2 169 x2 17x+60 0 0,25đ Lập 49 x1 12; x2 5 0,25đ x1 12 (nhận) x2 5 (nhận) 0,25đ Vậy độ dài hai cạnh góc vuông là: 12m và 5m 3 a. Vẽ đồ thị (P): y 2x2 1đ Bảng giá trị 0,5đ x -2 -1 0 1 2 y 2x2 -8 -2 0 -2 -8 Vẽ đúng đồ thị 0,5đ b.Tọa độ giao điểm của (P) và (d) 1đ Phương trình hoành độ giao điểm của (P) và (d) là: 0,25đ
  26. 2x2 3x 1 2x2 3x 1 0 1 Giải ra nghiệm x 1; x 0,25đ 1 2 2 1 1 Tìm được tọa độ giao điểm A(-1;-2) và B( ; ) 0,5đ 2 2 4 0,5đ Vẽ hình: B A O M N C a) . Tứ giác ABOC có ¼ABO ¼ACO 900 (tính chất của tiếp tuyến ) ¼ABO ¼ACO 1800 Tứ giác ABOC nội tiếp đường 0,5đ tròn VABC có AB AC (tính chất hai tiếp tuyến giao nhau ) 0,25đ và B¼AC 600 suy ra VBAC là tam giác đều ¼ACB 600 ¼AOB ¼ACB 600 (hai góc nội tiếp cùng chắn cung) OB 2 OA 4cm cos¼AOB cos600 Vậy tứ giác ABOC nội tiếp trung đường tròn tâm là 0,25đ trung điểm của OA bán kính bằng 2 cm. b) Xét hai tam giác VABM và VANB . 0,25đ ¼ABM và ¼ANB (góc tạo bởi tia tiếp tuyến và góc nội tiếp cùng chắn cung B¼M ) A chung 0,25đ Suy ra ABM đồng dạng ANB(g.g) 0,25đ AB AM AB2 AM.AN 0,25đ AN AB c) Tứ giác ABOC nội tiếp 0,25đ B¼AC B¼OC 1800 B¼OC 1800 B¼AC 1800 600 1200 2 R .4.120 4 2 0,25đ Squạt OBMC (cm ) 3600 3600 3
  27. 2.AB.OB S 2S 2 3.2 4 3 0,25đ OBAC OBA 2 4 12 3 4 0,25đ Scần tìm = SOBAC – Squạt 4 3 3 3 4(3 3 ) cm2 3 ĐỀ 11 ĐỀ THI HỌC KỲ II Môn Toán Lớp 9 Thời gian: 90 phút I. PHẦN CHUNG Bài 1. (2,0 điểm) Giải hệ phương trình và phương trình sau: 3 x 2 y 11 a) b) 4x4 + 9x2 - 9 = 0 x 2 y 1 Bài 2. (1,0 điểm) Cho parabol (P): y = x2 và đường thẳng (d): y = 2x+3 a) Vẽ (P). b) Xác định giao điểm (P) và (d) bằng phép toán. Bài 3. (2,0điểm) Cho phương trình: x2 + 2(m – 1)x + m2 – 3 = 0 (1) (m là tham số) a) Giải phương trình (1) với m = 2 2 2 b) Tìm m để phương trình (1) có hai nghiệm x1; x2 thỏa mãn x1 + x2 = 52 Bài 4. (1,0 điểm) Giải bài toán bằng cách lập hệ phương trình: Tìm số tự nhiên có hai chữ số biết chữ số hàng đơn vị lớn gấp ba lần chữ số hàng chục và nếu đổi chỗ các chữ số cho nhau thì được số mới lớn hơn số ban đầu 18 đơn vị Bài 5. (3,0 điểm) Cho nửa đường tròn (O) đường kính AB. Điểm M nằm trên nửa đường tròn (M ≠ A và B). Tiếp tuyến tại M cắt tiếp tuyến tại A và B của đường tròn (O) lần lượt tại C và D. e) Chứng minh rằng: tứ giác ACMO nội tiếp. f) Chứng minh rằng: C· AM O· DM