Đề kiểm tra cuối học kì II môn Toán Lớp 8 - Năm học 2020-2021 (Có đáp án)

docx 5 trang hatrang 25/08/2022 7461
Bạn đang xem tài liệu "Đề kiểm tra cuối học kì II môn Toán Lớp 8 - Năm học 2020-2021 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxde_kiem_tra_cuoi_hoc_ki_ii_mon_toan_lop_8_nam_hoc_2020_2021.docx

Nội dung text: Đề kiểm tra cuối học kì II môn Toán Lớp 8 - Năm học 2020-2021 (Có đáp án)

  1. ĐỀ KIỂM TRA CUỐI HỌC KÌ II NĂM HỌC: 2020 - 2021 Môn : Toán - lớp 8 Thời gian : 90 phút (không kể thời gian giao đề) I. MỤC TIÊU 1. Kiến thức: Kiểm tra chuẩn kiến thức, kỹ năng của học sinh đạt được trong học kì II, chương trình Toán 8. 2. Kỹ năng: Rèn luyện cho HS kĩ năng trình bày, vận dụng kiến thức. 3. Thái độ: Trung thực, cẩn thận khi làm bài. 4. Định hướng năng lực cần hình thành: Năng lực trình bày, quan sát, suy luận, vận dụng kiến thức, tính toán II. HÌNH THỨC - TNKQ: 40% - Tự luận: 60% III. THIẾT LẬP MA TRẬN Mức độ Vận dụng Nhận biết Thông hiểu Cấp độ thấp Cấp độ cao Tổng Chủ đề TNKQ TL TNKQ TL TNKQ TL TNKQ TL Phương Nhận biết được Hiểu và giải Vận dụng giải các trình phương trình bậc được phương bài toán bằng bậc nhất nhất một ẩn, trình bậc nhất cách lập phương một ẩn phương trình một ẩn trình. tương đương, nghiệm của phương trình. ĐKXĐ của phương trình. Số câu 5C1,2,3,4,5 2C17(ab) 2C17c,19 9 Số điểm 1,25 1 1,5 3,75 Tỉ lệ % 12,5% 10% 15% 37,5% Bất Biết được các tính Hiểu cách giải Vận dụng phương chất của bất đẳng BPT và biểu cách bỏ dấu trình thức diễn tập nghiệm GTTĐ của biểu bậc nhất Biết dạng BPT trên trục số thức để giải một ẩn bậc nhất một ẩn phương trình có tìm nghiệm của chứa dấu BPT GTTĐ Số câu 1C7 2C6.8 1C18 1C21 5 Số điểm 0,25 0,5 1 0,5 2,25 Tỉ lệ % 2,5% 5% 10% 5% 22,5% Tam Nhận biết được tỷ Vận dụng kiến giác số của hai đoạn thức để chứng đồng thẳng, định lý Ta minh hai tam giác dạng. lét. các trường đồng dạng, tính hợp đồng dạng đoạn thẳng. của hai tam giác 1
  2. Số câu 2C9,12 2C10,11 1C20 5 Số điểm 0,5 0,5 2 3 Tỉ lệ % 5% 5% 20% 30% Hình Nhận biết được lăng trụ hình hộp chữ đứng. nhật, hình chóp, Hình công thức tính chóp diện tích xung đều quanh của hình lăng trụ đứng, thể tích của hình chóp đều Số câu 4C13,14,15,16 4 Số điểm 1 1 Tỉ lệ % 10% 10% T.Số câu 12 7 4 23 T.sốđiểm 3 3 4 10 Tỉ lệ % 30% 30% 40% 100% IV. BIÊN SOẠN ĐỀ Phần I. Trắc nghiệm khách quan (4 điểm). Mỗi câu đúng 0,25 điểm Khoanh tròn vào chữ cái đứng trước phương án trả lời đúng trong mỗi câu sau: Câu 1: Phương trình bậc nhất một ẩn là 1 A. x + 1 = 0 B. 0x 5 0 C. 2x2 + 3 = 0 D. 2 0 x Câu 2: Phương trình 2x – 4 = 0 tương đương với phương trình: A. 2x + 4 = 0 B. x = 2 C. x = 4 D. 2 – 4x = 0 Câu 3: Tập nghiệm của phương trình 3x -3 = 0 là: A. S ={-1} B. S = ={1,3} C. S = ={1} D. S = ={3} Câu 4: Tập nghiệm của phương trình (x + 1)(x – 2) = 0 là: A. S = 2 B. S = 1;1;2 C. S =  D. S = 1;2 x 2 Câu 5: Điều kiện xác định của phương trình 5 là: x(x 2) A. x 0 B. x -2 C. x 0; x 2 D. x 0; x -2 Câu 6: Nếu -2a > -2b thì: A. a > b B. a = b C. a < b D. a b Câu 7: Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn? A. x3 2 0 B. x 5 0 C. 2x2 + 3 < 0 D. x + 1 = 0 Câu 8: Nghiệm của bất phương trình: 3x 9 0 A. x 3 B. x 3 C. x =3 D. x 3 Câu 9: Cho đoạn thẳng AB = 2 dm và CD = 3dm. Tỉ số hai đoạn thẳng này là AB 3 AB 2 AB 1 AB 15 A. B. C. D. CD 2 CD 3 CD 15 CD 1 Câu 10: Cho hình vẽ biết GH // EF. Trong các câu sau, câu nào đúng? D DE GH FE DH DH GH DF DE A. B. C. D. G H DG DF GH DF DF EF GH DG E F 2
  3. Câu 11: ΔEFG ΔMNP nếu: EF EG FG EF EG FG A. B. MN NP MP MP MN NP EF EG FG EF EG FG C. D. NP MP MN MN MP NP     Câu 12: Cho ABC có A = 400; B = 800 và DEF có E = 400 ; D = 600. Khẳng định nào sau đây là đúng : A. ABC EFD B. ABC EDF C. ABC DEF D. ABC DFE Câu 13: Hình hộp chữ nhật có A. 8 đỉnh, 6 mặt, 12 cạnh. B. 6 đỉnh, 8 mặt, 12 cạnh C. 12 đỉnh, 6 mặt, 8 cạnh D. 6 đỉnh, 12 mặt, 8 cạnh Câu 14: Công thức tính diện tích xung quanh của hình lăng trụ đứng là: 1 A. S = 3p.h B. S = 2p.h C. Sxq = p.h D. S = p.h xq xq 2 xq Câu 15: Quan sát các hình vẽ dưới đây và cho biết hình nào là hình chóp lục giác ? A. Hình 1 B. Hình 2 C. Hình 3 D. Hình 4 Câu 16: Công thức tính thể tích của hình chóp đều là: 1 2 1 A. V = S.h B. V = S.h C. V= S.h D. V= S.h 2 3 3 Phần II. Tự luận ( 6 điểm). Câu 17 (1,5 điểm): Giải các phương trình sau: 2 1 3x 11 a) 4x - 2 = 0 b) 5 - (x - 6) = 4(3 – 2x) c) x 1 x 2 (x 1).(x 2) Câu 18 (1 điểm): Giải bất phương trình 2x + 3 ≤ 6 – x và biểu diễn tập nghiệm trên trục số. Câu 19 (1 điểm): Một xe vận tải đi từ tỉnh A đến tỉnh B, cả đi lẫn về mất 10 giờ 30 phút. Vận tốc lúc đi là 40km/giờ, vận tốc lúc về là 30km/giờ. Tính quãng đường AB. Câu 20 (2 điểm): Cho ABC vuông tại A, có AB = 12 cm; AC = 16 cm. Kẻ đường cao AH (H BC). a) Chứng minh: HBA ഗ ABC b) Tính độ dài các đoạn thẳng BC, AH. Câu 21 (0,5 điểm): Giải phương trình sau: x 5 3x 1 V. HƯỚNG DẪN CHẤM – THANG ĐIỂM Phần I. Trắc nghiệm khách quan(4 điểm). Mỗi câu đúng 0,25 đ Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Đáp án A B C D D C B A B C D A A B B D 3
  4. Phần II. Tự luận: 6 điểm Câu Đáp án Điểm a) 3x - 6 = 0 0,25 3x = 6 x = 2 0,25 Vậy tập nghiệm của phương trình là S = {2} b) 5 - (x - 6) = 4(3 – 2x) 5 – x +6 = 12 – 8x - x + 8x = 12 – 11 7x = 1 1 x = 0,25 7 17 1 0,25 1,5 điểm Vậy tập nghiệm của PT là S=  7 2 1 3x 11 c) x 1 x 2 (x 1).(x 2) ĐKXĐ: x - 1; x 2 => 2(x – 2) – (x + 1) = 3x – 11 0,25 2x – 4 – x – 1 = 3x – 11 – 2x = – 6 x = 3 (thỏa mãn ĐKXĐ) Vậy tập nghiệm của phương trình là S = {3} 0,25 2x + 3 ≤ 6 – x  2x + x ≤ 6 - 3  3x 3  x 1 0,5 Câu 18 Vậy x 1 là nghiệm của bất phương trình 1 điểm + Biểu diễn tập nghiệm đúng | ]///////////////////////////// 0,5 0 1 Gọi quãng đường AB là x (km) ( x > 0) Thời gian xe vận tải đi từ A đến B là: x h 0,25 40 Thời gian xe vận tải đi từ B về đến A là x h . 30 0,25 Tổng thời gian hết 10h30’ = 10,5 h. Câu 19 x x 1 điểm Theo bài ra ta có PT : 10,5 40 30 0,25  3x+ 4x = 1260  7x= 1260 0,25  x = 180 ( Thỏa mãn điều kiện đầu bài) Vậy quãng đường AB dài 180 km. 4
  5. Vẽ hình đúng 0,5 a) Xét HBA và ABC có: 0,5 · · 0 · Câu 20 AHB BAC 90 ; ABC chung 2 điểm HBA ഗ ABC (g.g) b) Áp dụng định lí Pytago trong tam giác ABC ta có: 0,5 BC 2 AB2 AC 2 = 122 162 202 BC = 20 cm Ta có HBA ഗ ABC (theo chứng minh ý a) AB AH 12 AH BC AC 20 16 12.16 AH = = 9,6 cm 0,5 20 x 5 3x 1 (1) * Với x 5  x - 5 0 => x 5 x 5 khi đó pt (1) có dạng x – 5 = 3x + 1  -2x = 6 x = -3 Câu 21 x = -3 (loại) vì không thỏa mãn điều kiện x ≥ 5 0,25 0,5 điểm * Với x < 5, ta có x 5 5 x khi đó pt (1) có dạng 5 – x = 3x + 1  -4x = -4 x = 1 thỏa mãn điều kiện x < 5, nên 1 là một nghiệm của phương trình (1) Vậy tập nghiệm của phương trình (1) là S = {1} 0,25 (Lưu ý HS có cách giải khác đúng vẫn cho điểm tối đa) 5